
Heat transport by low-energy

quasiparticles in YBa2Cu3Oy: a field

and doping dependent study

by

Michael L. Sutherland

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Physics
University of Toronto

Copyright c© 2005 by Michael L. Sutherland



Abstract

Heat transport by low-energy quasiparticles in YBa2Cu3Oy: a field and doping
dependent study

Michael L. Sutherland
Doctor of Philosophy

Graduate Department of Physics
University of Toronto

2005

Measurements of heat and charge transport at very low temperature were used to

investigate the ground state of high-purity single crystals of the cuprate YBa2Cu3Oy as a

function of doping. Samples were investigated on either side of the superconducting phase

boundary, in both zero and applied magnetic field. We find that from optimal doping

to a doping near the onset of superconductivity the elementary electronic excitations

are understood to be nodal quasiparticles, whose excitation spectrum is governed by

the energy scale of the pseudogap. In a magnetic field, these quasiparticles behave

unexpectedly in our purest samples - conventional transport theory cannot account for

their field and temperature dependence in either the unitary or Born scattering limits.

At very low dopings, such that the hole concentration in the CuO2 planes is slightly

less than the critical doping needed for the onset of superconducting order, we observe

delocalized fermionic excitations at zero energy. This reveals that the ground state of

clean underdoped cuprates is metallic, in contrast to the insulating ground state observed

in underdoped La2−xSrxCuO4. The ratio of heat to charge transport in this metallic state

violates the Wiedemann-Franz law, the first such observation in underdoped cuprates.
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cuprate phase diagram. In the underdoped regime of YBCO, we find that the residual
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the pseudogap. In LSCO, we find the same qualitative behaviour, but the linear term in
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We note that similar work on the doping dependence of the residual linear term has

been published by the group of Yoichi Ando. Measurements of LSCO were reported prior

to our publication [2], although their data does not extend to as low temperature and

doping as our study. In YBCO results by Sun et.al. were reported after ours [3], and are

qualitatively the same. A re-analysis of their data using more advanced fitting techniques

in Appendix 3 shows that the values of the residual linear term versus doping agree quite

well with ours.

Field dependence of thermal transport in YBCO

Measurements of the thermal conductivity of YBCO at a number of dopings, and in

crystals of varying purity were made to test the limits of semi-classical theories of trans-

port in the mixed state. In an ultra pure sample of YBCO6.99 in magnetic fields applied

perpendicular to the planes, the temperature dependence of the data was found to be

poorly described in both the Born and Unitary limits, suggesting that theories incorpo-

rating intermediate scattering phase shifts need to be developed. Additionaly, the field

dependence of the linear term suggested that quasiparticle-vortex scattering can not be

negelected in this compound. The results of this study were reported in Phys. Rev. Lett,

[4] in a manuscript authored by Rob Hill with inputs from myself, Louis Taillefer, Dave

Hawthorn, Cyril Proust and Christian Lupien. Experimentally, I assisted in both the

characterization measurements and low temperature dilution fridge measurements.

Thermal transport in the stoichiometric underdoped cuprate YBa2Cu4O8

One of the more puzzling results of heat transport measurements was the absence of a

residual linear term in the double-chained YBCO-124 compound reported by Hussey et.al

[5]. In collaboartion with the authors of this work, we have repeated measurements on

their samples, and extended the study to include measurements made in a magnetic field.

We find that there is in actuality a finite linear term in this compound, and that the field

dependence of heat transport displays novel behaviour. All preparation, characterization
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of Cyril Proust and Marc Nardonne of the CNRS.

Wiedemann-Franz law study in highly underdoped curpates

We have measured both thermal and charge conductivity in the normal state of very low

doped YBCO. We find metallic behaviour in both channels - a resistivity that is essen-

tially flat down to low temperatures, and a residual linear term in thermal conductivity

that reveals the presence of low-energy delocalized quasipartilces. The ratio of the two

violate the Wiedemann-Franz law, the first time such an observation has been seen in

underdoped cuprates. This violation could be the result of a strange localization mech-

anism, or the fingerprint of spin charge separation. For this study I performed all of the

sample characterization and contact preparation, as well as taking the lead role in the
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Summary

Here I summarize the contributions that I have made to the work presented in this thesis,

as well as note any publications which have arisen, or will arise in the near future. In

order of involvement, the roles in each study can be catagorized as: 1. principal author

(overseeing sample preparation, measurement, data analysis and manuscript authoring).

2. assisting author (actively participating in measurements and data analysis) and 3.

contributing author (non-trivial contributions to either measurments or authouring of

manuscripts).

Table 1: Summary of the author’s contributions to the projects summarized in this
Thesis.

Study Role Reference

Doping Dependence Principal Author PRB [1] Physica C [6]

κ(H) in YBCO6.99 Assisting Author PRL [4]

κ(H) in YBCO6.50,YBCO6.75 Principal Author unpublished

κ in YBCO-124 Principal Author preprint in preparation

κ in LSCO Contributing Author PRL [7]

κ in Tl2201 Contributing Author preprint in preparation

ρ(55T ) in YBCO6.50 Principal Author preprint in preparation

κ in low doped YBCO Principal Author preprint (to be submitted to PRL)

WF law violation in YBCO Principal Author preprint in preparation

κ in Sr3Ru2O7 Assisting Author preprint (to be submitted to PRB)
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1

High Tc cuprates: progress and challenges

1.1 Chapter overview

The discovery of a family of superconducting ceramic oxides was both a major surprise,

and a major advance in materials physics. Prior to 1986 most ceramic oxide materials

were known to have semiconducting or insulating electronic properties, making them

unlikely hosts for superconductivity. Up until this point superconductivity was typically

observed in systems with low electrical resistivities, such as the elemental metals Pb or

Hg, or intermetallics like NbSe2. The observation by Bednorz and Müller [8] of super-

conductivity persisting to relatively high temperatures in the La-Ba-Cu-O system came

as a shock to the community, and triggered a monumental research effort focussed on

understanding the complex physics of these systems.

In the past 20 years there have been many important advances in our knowledge

of these systems, however several fundamental questions remain unanswered. In the

following sections I attempt to briefly review some of the key established facts about

the cuprates, and emphasize the gaps in our understanding1 In the final section I pose

the questions that may be answered by measurements of thermal conductivity at low

temperatures, setting the stage for the chapters to follow.

1.2 Cuprate superconductors: basic electronic properties

The cuprate superconductors exhibit a variety of complex crystal structures, however

each is composed of the same fundamental building blocks. The common element in

these systems is the existence of a planar arrangement of copper and oxygen atoms,

sandwiched between layers that act as a charge reservoir for accepting (or donating)

electrons, as shown schematically in Figure 1.1. In the copper oxides, the energies of

1A much more in-depth review of the physics of the cuprates can be found in the excellent articles by
Orenstein and Millis[9], Norman and Pepin[10] , and Hussey [11].

1
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Cu-O PlaneCharge
Reservoir

Figure 1.1: The basic building blocks of a cuprate superconductor. Cu-O planes host electronic
transport, separated by charge reservoir layers which either serve to dope holes or electrons into
the planes.

the copper and oxygen orbitals are very close, meaning that both the copper and oxygen

electrons contribute to conductivity. This is a very different situation than in the majority

of metallic oxides, where the bands are formed primarily by the overlap of the metallic

d-orbitals [12].

The electronic configuration of the Cu2+ ions that form the basis of these compounds is

responsible for the unusual properties of the cuprates. In the undoped parent compounds

of the cuprate superconductors, Cu2+ has an orbital configuration of 3d9, where the

tetragonal crystal symmetry requires the one unpaired electron to rest in the dx2−y2

orbital. This electron carries a spin of 1/2, resulting in a lattice in which spin-spin

interactions are large, and influence the behaviour of conduction electrons.

The effect of the oxygen 2p orbitals is illustrated schematically in the band diagram

in Figure 1.2. The 1/2 filled Cu x2 − y2 band lies close in energy to the band formed by

filled O and Cu orbitals, and one would predict the undoped system should be a metal.

This is however not the case, as the undoped parent compounds are observed to be strong

electrical insulators.

The insulating behaviour is a direct result of the strong interactions between the

electrons, which is greatest for electrons in half filled bands. The energy required to

place a second electron into the half filled dx2−y2 orbital is large, a result of the strong
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Figure 1.2: Schematic picture of the energy states of the cuprate Mott insulator, adapted from
reference [12]. In a non-interacting systems (left) the cuprates are expected to be metallic.
When electron interactions are turned on, the Cux2−y2 band is split in two - with a sizable
energy gap U in between. This splitting results in an insulating material.

Coulomb repulsion between the charges. This additional energy has the effect of splitting

the single x2−y2 band into two bands, separated by an energy U. These bands are known

as the upper and lower Hubbard bands (UHB and LHB) and the energy gap U is typically

on the order of about 2 eV [10], effectively preventing electrons from moving through the

lattice. Materials that are unable to transport charge in this manner are known as Mott

insulators.

The electronic gridlock is broken by adding (or removing) electrons from the copper-

oxygen planes, a process known as doping. Theoretical understanding of the evolution

of the Mott insulator with doping is still lacking, but is commonly viewed as the starting

point for a theoretical understanding of the cuprates [13]. Adding charge carriers to the

planes evolves the Mott insulator towards a fully metallic Fermi-liquid state, and we shall

now discuss this evolution in the context of the doping phase diagram.

1.3 Cuprate phase diagram

The concentration of doped charge carriers in the CuO planes is denoted by p, with

p=0 referring to the Mott insulating state discussed above. Carriers can either be

electron-like as in Nd2−xCexCuO4−y (NCCO) and Pr2−xCexCuO4−y (PCCO), or hole-

like as in YBa2Cu3Oy (YBCO). La2−xSrxCuO4−y (LSCO), Bi2Sr2CaCu2O8+δ (BSCCO)

and Tl2Ba2CuO6+δ (Tl2201). The phase diagram for both types is similar2 and the ma-

2The phase diagram for electron doped superconductors exhibits a lower maximal Tc, and has an
insulating phase that persists over a wider range of dopings. See for instance, reference [14].
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Figure 1.3: The temperature-doping phase diagram of cuprate superconductors.

terials we study in this work are on the hole doping side of the phase diagram shown in

figure 1.3.

Understanding the complexity of phases evident in figure 1.3 is one of the outstanding

goals in cuprate research. At very low doping p . 0.03 the cuprates are anti-ferromagnetic

insulators discussed above, where transport is crippled by strong Coulomb interactions.

At low to moderate dopings, the materials are in the “pseudogap phase” where remnants

of a gap in the electronic excitation spectrum persist to temperatures above Tc. Close

to p = 0.06, superconductivity occurs, reaching a maximum Tc at an optimal doping

of p=0.16. For YBCO, BSCCO and Tl2201 this Tc is on the order of 90 K, but can

reach as high as 138 K in the Hg based compound Hg0.8Tl0.2Ba2Ca2Cu3O8.33 [15]. At

high temperatures above the superconducting dome, the material is a so-called strange

metal, bounded by the pseudogap line at low dopings and the metallic transition line

at high dopings and characterized by transport and spectroscopic properties that are

inconsistent with conventional metallic theory. Finally, when doping is increased beyond

p=0.26 superconductivity is entirely suppressed, resulting in a metal well-described by
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Fermi liquid physics.

1.4 The superconducting phase

The distinguishing feature of the superconducting phase that sets it apart form conven-

tional superconductors is the exotic nature of its pairing symmetry. In typical elemental

superconductors, the pairing is isotropic in momentum space, electrons form Cooper pairs

in zero spin and zero angular momentum states (S = 0, L=0) leading to a gap that is

constant around the Fermi surface. This s-wave pairing symmetry gaps out excitations

at low energies, leading to an activated behaviour in most physical properties.

The cuprates are now known to be unconventional superconductors, pairing in states

of non-zero angular momentum like the heavy fermion superconductors [16] and 3He [17].

Early evidence that the order parameter (equivalent to the gap in BCS theory) had nodes

was found in the linear dependence of the penetration depth with temperature [18]. The

order parameter was soon shown to undergo a change of sign upon a 90◦ rotation in the

tri-crystal experiments of Kirtley and Tsuei [19], clinching the case for an S=0, L=2

d-wave pairing state3.

The existence of d-wave symmetry means that the order parameter must vanish at four

nodal points on the Fermi surface, where low energy excitations abound. The precise lo-

cation of these nodes has been identified by Angle-Resolved Photoemission Spectroscopy

(ARPES) to lie in the (± π,± π) direction, which is the dx2−y2 form of the gap.

What remains unknown at present is the mechanism responsible for pairing in high

Tc superconductors. The electron-phonon interaction is unlikely to provide the whole

story, as it is difficult to reconcile the observed order parameter symmetry with such

a pair potential. Many have suggested instead that the pairing is electronic in origin,

perhaps mediated by the antiferromagnetic spin fluctuations observed in the underdoped

regime. The resemblance of the cuprate phase diagram to that observed in quantum

critical systems such as CePd2Si2 [21] where antiferromagnetic order is suppressed with

pressure is intriguing. This parallel suggests that understanding the role of magnetism

may be crucial to understanding superconductivity in the high-Tc’s.

The superconducting state in cuprates at optimal and over-doping bears much re-

semblance to its less exotic cousins. Elementary excitations take the form of long lived

3A very thorough review of the evidence for d-wave pairing can be found in the article by Kirtley and
Tsuei [20]
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quasiparticles for example, which are well described by a BCS Fermi-liquid theory. In

the underdoped regime however ARPES [22] and tunnelling [23, 24] have shown that the

superconducting gap continues to increase as the Mott insulator is approached, despite

the fact that Tc and the superfluid density [25] is suppressed towards zero. This region of

the phase diagram sees the breakdown of conventional BCS theory, and understanding it

may is a key step towards unravelling the puzzles of high temperature superconductivity.

1.5 The underdoped regime

There are two major characteristics of underdoped cuprates that distinguish them from

those at optimal doping. First, the integrity of the Fermi surface is challenged, and sec-

ond, a gap like feature in the normal state electronic excitation spectrum is observed. In

this section I briefly review these characteristics, and summarize some of the experimental

and theoretical progress in this regime of the phase diagram.

1.5.1 Evolution of Fermi surface with p,T

In the past decade sustained progress in the development of the ARPES technique have

made it the principal tool for studying the cuprate Fermi surface. At optimal and over-

doping, the quasi 2D Fermi surface is observed to consist of cylinders centered at the

(π,π) position in k space, with a Fermi vector of kF ∼ 0.7 Å [26]. The first study to

probe the Fermi surface in the underdoped regime was performed by Marshall et.al.,

who found that in underdoped BSCCO well defined Fermi surface crossings only existed

in an arc centered about the nodal points at (π/2, π/2) [27] at temperatures above Tc.

Away from these regions the observed spectra were broad, and lacking the sharp peaks

associated with long-lived quasiparticles. Norman et.al. [28] traced the temperature de-

pendence of the Fermi surface in the underdoped regime, showing that the full cylindrical

shape above T ∗ fragmented in Fermi arcs upon cooling, eventually shrinking to consist

of only the four nodal points at T < Tc.

Similarly, in underdoped LSCO with 6% Sr Zhou et.al. have found only sharp quasi-

particles around the nodal region, with spectral broadening in the antinodal directions

[29]. This washing out of the Fermi surface has been attributed to either effects of

coupling to strong magnetic fluctuations along the (π,π) direction [30] or quasiparticle

scattering between nested portions of the Fermi surface [29].

Although the dependence of the Fermi surface topology on doping and temperature

is yet to be settled, it is clear that the behaviour is rather unlike that seen in normal
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metals.

1.5.2 The pseudogap regime

For p < pSC nuclear magnetic resonance (NMR) measurements were the first to estab-

lish that a peculiar remnant of the low energy excitation gap persists to temperatures

above Tc, and is closed in at the characteristic temperature T ∗, known as the pseudogap

temperature. In 1989 Warren et.al. [31] observed a temperature dependent spin suscep-

tibility to high temperatures in underdoped YBCO, and postulated the existence of a

spin-gap in the normal state. Subsequent experiments have established that this gap in

fact exists in both the charge and spin channels4. To date, evidence of the pseudogap has

been observed in ARPES [28, 33, 22], optical conductivity [34], tunnelling [23, 24] and

Raman spectroscopy [35] among others. Most recently the pseudogap has been observed

for the first time using ultra-low temperature thermal conductivity measurements [1] by

our own group 5.

Figure 1.4: The angular dependence of the pseudogap energy in underdoped BSCOO, from
Harris et.al. [36]. The figure shows ARPES measurements of the gap as the angle around
the Fermi surface is varied in both the superconducting and non-superconducting states. The
angular dependence is observed to be identical, and to possess d-wave symmetry, with nodes in
the (π, π) direction.

Using ARPES, Harris et.al. have determined that the pseudogap shares the same sym-

4A very thorough review of the topic can be found in the article by Timusk and Statt [32]
5This observation is a major component of this thesis, and is discussed in chapter 8
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metry as the superconducting gap in k-space. This observation is reproduced in figure

1.4, which shows the angular dependence of the gap measured in both the supercon-

ducting state and above Tc. This intriguing similarity is suggestive of a common origin,

although this is the subject of some speculation and debate. Theoretical ideas concerning

the pseudogap identity roughly fall into two categories. Either the pseudogap is thought

to be an extrinsic feature, mainly unrelated to superconductivity, or it is an intrinsic

feature, derived from the superconductivity itself.

Intrinsic origins of the pseudogap

Emery and Kivelson have pointed out that the role that classical [37] and quantum phase

fluctuations [38, 39] of the superconducting order parameter play in determining the scale

of Tc. The low superfluid density of the doped insulator implies that superconducting

phase fluctuations are unusually large in the cuprates. For a very low phase stiffness,

these fluctuation effects can conceivably govern the entire doping phase diagram. Mea-

surements of ρS via the microwave penetration depth highlight the role of fluctuations

well. The behaviour of the superfluid density versus temperature for T < Tc is observed

to be linear, and may in part be described by a quasi-two dimensional fluctuation model

[40]. Using such measurements, one can determine the characteristic phase fluctuation

temperature T θ itself, which is the temperature at which long range phase coherence dis-

appears and bulk superconductivity is lost. In the limit where T θ is much greater than

the mean-field BCS transition temperature TBCS−MF , the fluctuations are not expected

to suppress Tc noticeably. When T θ ∼ TBSC−MF , the bulk transition temperature can

be greatly reduced, as long range phase coherence is lost at relatively low temperatures.

Such a scenario is believed to be particularly relevant to underdoped cuprates due to

their 2D nature, low carrier density and their proximity to an insulating phase. The

picture that emerges is a phase diagram of the type shown in figure 1.5, where the under-

doped phase exhibits pairing up to T ∗ but bulk superconductivity is not realized. The

characteristic dome shape of the superconducting region is then defined by the doping

dependence of these two energy scales. The magnitude of the pseudogap is then expected

to be determined by the energy scale of the pairing, given by BCS theory.

This scenario has found some experimental backing, most noticeably in measurements

of the Nernst effect at T > Tc. In such experiments a large transverse Nernst voltage

has been observed in both underdoped LSCO and high quality ortho-II ordered YBCO

[42, 43, 44] at temperatures well above the bulk superconducting transition tempera-
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Figure 1.5: Left : The doping phase diagram of the cuprates in the intrinsic pseudogap model,
where phase fluctuations destroy superconductivity in the underdoped regime, but supercon-
ducting pairing persists. T θ is the experimentally determined phase ordering temperature, while
TBCS−MF is the transition temperature expected from BCS theory. Right : Schematic di-
agram showing the temperature dependence of the superconducting gap ∆SC , the pseudogap
∆PG and the total gap ∆tot =

√
∆2

SC + ∆2
PG in the underdoped regime, assuming an intrinsic

origin for the pseudogap. Adapted from reference [41].

ture. The persistence of this signal has been interpreted as evidence of remnant vortex

like excitations above Tc, supporting the idea of preformed pairs below the pseudogap

temperature.

Extrinsic origins of the pseudogap

In the picture that the pseudogap is the result of a secondary order that co-exists or com-

petes with superconductivity there are many proposed models. Such an order parameter

would posses its own gap ∆PG independent of the superconducting gap ∆SC , resulting in

the phase diagram and temperature dependence of the total energy gap ∆ seen in figure

1.6.

Among these theories Chakravarty et.al. [45] have argued for the existence of a d-

density wave (DDW) state that gives rise to the pseudogap - which is understood to be

a full gap of energy ∆PG that is rounded out by the presence of disorder. Such a state

is proposed to break translational, rotational and time-reversal symmetries, resulting

in circulating bond currents. Such currents are arranged in plaquettes and give rise to

local magnetism, with small but experimentally measurable magnetic fields on the order

of a few Gauss. In their model, competition between the DDW state and the d-wave

superconducting order parameter is what eventually destroys superconductivity in the
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Figure 1.6: Left : The doping phase diagram of the cuprates in the extrinsic pseudogap model,
where a secondary order competes with superconductivity. Right : Schematic diagram show-
ing the temperature dependence of the superconducting gap ∆SC , the pseudogap ∆PG and the
total gap ∆tot =

√
∆2

SC + ∆2
PG in the underdoped regime using the mean field approximation.

Adapted from reference [41].

underdoped regime. Similar models incorporating orbital currents have been proposed

by Varma [46] and Wen and Lee [47]. Whether these states are realized in cuprates is

still the subject of investigation.

Stripe order

A second class of extrinsic pseudogap models is related to the existence of unidirectional

density wave states [48]. These can consist of modulations of the charge density (charge

stripes) or both the spin and charge density (spin stripes). In these scenarios the spin and

charge is inhomogeneously organized within the superconducting phase. In the strong

coupling limit it is proposed that a microscopic phase separation occurs, and the charge

is restricted to one dimensional conducting rivers, bounded by antiferromagnetically or-

dered insulating domains. Ample experimental evidence of such order has been observed

in the LSCO [49] and Nd-doped LSCO [50, 51, 52] systems, where a characteristic four

fold splitting of Bragg peaks observed with neutron scattering is seen. The size of the

splitting in reciprocal space is observed to scale inversely with stripe separation, as ex-

pected.

In the weak coupling limit both the charge and spin densities exhibit incommensurate

modulations, although a strict real-space segregation of phases is not observed. The study

and classification of the various types of stripes and their fluctuations is an ongoing
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Figure 1.7: The magnitude of the ordered spin moment per Cu ion as a function of temperature
and applied field in underdoped LSCO. The large enhancement in the signal at low tempera-
tures and high fields is a signature of the coexistence of superconductivity and SDW order in
underdoped LSCO. From reference [55].

task, with neutron and x-ray scattering in LSCO being the most common avenues of

investigation. Studies on other systems are hampered by the large sizes and low mosaic

spreads needed for neutron scattering measurements, and as a result several key questions

remain unanswered at present. Does the existence of stripe order serve to inhibit or aid

superconductivity, or are stripes just passive bystanders? 6 Furthermore, to what extent

are the results observed in LSCO relevant to other systems such as YBCO, where no

evidence of static stripe order has yet been observed [53]?

Recent measurements by Stock, Buyers et.al. [53, 54] on very high quality samples

of underdoped YBCO have attempted to overcome these limitations. Their results show

that the superconducting phase exhibits one-dimensional incommensurate modulations

at low energies, consistent with hydrodynamic stripes. There appears to be no evidence

for static stripe order of the same type as that observed in LSCO. From a transport

perspective, at the low energies accessed in a dilution fridge, it is only static modulations

that could conceivably influence κ measurements in the limit T → 0.

In this respect the situation in underdoped LSCO is much more clear. Lake et.al.

have used magnetic neutron scattering to study the spin order of an underdoped sample

6In LSCO it seems at present that there is some competition between superconductivity and static
stripes as observed through the depression of Tc at 1/8 doping [49]
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Figure 1.8: Resistivity of LSCO in the extreme overdoped region of the phase diagram, from
[56]. Samples with J ‖ ab-plane (A3,A4) and J ‖ c-axis (C2) show a T2 dependence of the
resistivity - clear evidence of a Fermi-liquid metal.

of La1.9Sr0.1CuO4 subjected to a 14.5 Tesla magnetic field. In such an experiment the

applied field is used as a tuning parameter, moving the sample between d-wave super-

conductivity and spin-density wave (SDW) order. They found that the average magnetic

moment per Cu ion was greatly enhanced by the application of a field, as reproduced

in figure 1.7. The correlation length of this local ordering was large - much larger than

the superconducting coherence length or inter-vortex spacing. This point is significant,

it implies that the spin ordering is not localized within the vortex cores but permeates

throughout the sample. The effects of such a co-existing antiferromagnetic order on

transport in low doped LSCO is investigated in chapter 8.

1.6 The overdoped regime

For dopings slightly above optimal doping Tallon and Loram have proposed that the

pseudogap is still present in the normal state [57], and that it falls to a zero at a critical

doping of p=0.19. Such a scenario is still controversial, but supported by a wide variety

of experimental data. For dopings much greater than p = 0.16 there is mounting evidence

that the ground state is metallic in nature, well described by Fermi-liquid physics.

Evidence of this can be found in transport measurements by our group, in which
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superconductivity is suppressed by a magnetic field in a sample of strongly overdoped

Tl2201 with a Tc of 15 K and estimated doping of p = 0.26 [58]. Measurements of both

thermal and charge transport reveal that the ground state obeys the Wiedemann-Franz

law, a well-known property of Fermi-liquids. In the LSCO system it is possible to increase

doping even further, such that p > 0.27 and the samples are non-superconducting in zero-

field. Studies by Nakamae et.al. [56] on crystals with p = 0.30 reveal that the region

of the phase diagram that lies beyond the superconducting dome is a highly correlated

metal with a T 2 resistivity, as observed in Figure 1.8. All of this points towards a phase

diagram that is conventional for high dopings, and increasingly unconventional as one

approaches the Mott insulator.

1.7 Why study low-temperature heat transport?

Advantages of the technique

In many ways heat transport is a privileged probe of the cuprates. Since it is a bulk

technique, it can circumvent many of the materials issues that can complicate inter-

pretation of data from surface sensitive measurements, such as ARPES and tunnelling.

Measurements are possible on extremely small samples if one is careful enough, compared

to neutron scattering for instance, which often require large mosaics of smaller crystals

to obtain a sizable signal. Additionally, thermal conductivity (κ) is a measure of only

mobile excitations, and thus can very easily distinguish between a metallic or insulating

state. These measurements may also be extended to very high magnetic fields, providing

information on the evolution of the heat carriers with field or in a superconductor, the

nature of the ground state in the absence of superconductivity, provided H > Hc2.

In a superconductor heat is not carried by Cooper pairs, which exist in a zero-entropy

state. Instead electronic heat transport is accomplished via excitations out of the con-

densate, which carry with them valuable information about the superconducting state

itself. It is usually quite easy for instance to distinguish between an order parameter

which has nodes, and therefore quasiparticle excitations to T = 0, and an order para-

meter which is fully gapped. In a d-wave superconductor the linear in T electronic term

caries information about the quasiparticle dispersion, and hence the superconducting gap

itself. At low enough energies, the thermal conductivity in such materials has been shown

to be universal with respect to impurity concentration, and is impervious to vertex and

Fermi-liquid corrections [59, 60]. These facts combine to make interpretation of the date
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relatively straight forward.

Applications to cuprate physics

With these considerable advantages there exist many open questions that thermal con-

ductivity may address in the cuprates. Prior to the work reported in this thesis, low

temperature κ measurements in the high-Tc compounds had only been attempted at

optimal doping on a limited number of materials [61, 60]. By extending our scope to

include cuprates in the under and overdoped regimes in YBCO, LSCO and Tl2201 7 we

hope to investigate the evolution of the ground state across the superconducting dome

and beyond.

As the above sections highlight, one of the most contentious issues is the nature of

the ground state in the underdoped regime. Is the pseudogap the result of some exotic

form of competing order, or is it merely a signature of superconductivity that has failed

to achieve long range order? Does a BCS theory modified to incorporated a d-wave

order parameter accurately describe the superconducting ground state in the underdoped

regime, as it does at optimal doping? In the limit of very low dopings does the ground

state in the absence of superconductivity bear any resemblance to that at higher dopings?

And finally - how universal is the doping dependence between cuprates? Should YBCO

exhibit different behaviour than the much more disordered LSCO system?

In the presence of an applied magnetic field much of the details of heat transport

by nodal quasiparticles are left to be filled in. An outstanding question is the role that

disorder plays in setting the scale of the response of the quasiparticles to a field. At

a more fundamental level, how does one treat scattering by impurities in cuprates? Is

the scattering process best modelled theoretically by strong (unitary) or weak (Born)

scattering?

Our approach

The preceding questions - and others, are the focus of this Thesis. Our approach to

answering these queries is two-fold. We study in great detail the doping dependence of

heat transport across the phase diagrams of cuprates, at many intervals in both zero

and applied magnetic field using state of the art instrumentation and analysis. Secondly,

we restrict our investigations to only the best quality single crystal samples available,

7This broad initiative is the collective work of many members of our group past and present, and is
summarized in this Thesis, as well as the Thesis of Dave Hawthorn [62].
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thereby reducing any uncertainties associated with materials issues.



2

Theoretical foundations of transport in solids

2.1 Introduction

A complete description of transport in solids involves a detailed and sometimes complex

accounting of carriers and the processes which scatter them. In this section I offer a brief

review of the general theory of transport in a material possessing long range order. I begin

with a short discussion of the kinetic theory of transport, then summarize three basic

results: the conduction of charge by free electrons in a metal, the conduction of heat by

the same electrons, and the conduction of heat by quantized lattice vibrations (phonons).

In the final sections I introduce an empirical fitting procedure based on the specular

reflection of phonons from crystal boundary that is used extensively throughout this

body of work to extract electronic and phononic contributions to thermal conductivity.

A rigorous and much more comprehensive treatment of these ideas may be found in

references [63], and particularly the book by Ziman [64], where the more formal approach

of the Boltzmann theory is developed.

2.2 The kinetic theory of heat transport

The kinetic theory of transport in metals has its roots in the kinetic theory of gases,

developed in the latter part of the 19th century. Soon after the discovery of the electron

by J.J. Thompson, Drude successfully applied the formalism developed for an ensemble

of randomly moving gas molecules to a gas of free electrons inhabiting a crystal lattice.

The calculation of the thermal conductivity κ of such a gas is straightforward. Consider

a collection of free particles, with an average velocity of v. If the gas is sufficiently

rarefied, collisions between particles will happen fairly infrequently. Let us assume that

the probability P (t) that a particle will survive unperturbed for a time τ is an exponential

function of time t, that is P (t) = exp−(t/τ). If one applies a temperature gradient ∆T

across the gas, then the thermal current per unit area is given by:

16
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U =
1

3
v2τCv∆T = κ∆T (2.1)

where Cv is the heat capacity of the system at constant volume, and the coefficient of the

temperature gradient, κ, is called the thermal conductivity. It is convenient to describe

a mean free path ` of the particles. We define this as the average distance that a particle

may travel before suffering a collision, or ` = vτ . The thermal conductivity of the gas is

then recast as:

κ =
1

3
Cvv` (2.2)

In many situations this simple result is quite useful in estimating the thermal conductivity

of a given system of particles, and can be applied equally well to a gas of phonons.

In a situation were there are many individual scattering mechanisms limiting the

mean free path, Matthiessen [65] showed that collision rates will add in a linear manner,

provided that the presence of one mechanism does not influence the way in which other

mechanisms operate. In other words, the relaxation times add as follows:

1

τ
=

1

τ1

+
1

τ2

+ .... (2.3)

2.3 Heat transport by free electrons in metals

The kinetic theory of heat transport 2.2 allows one to calculate the electronic thermal

conductivity of a metal in a fairly straightforward manner. In the low temperature limit,

the scattering of electrons is primarily through elastic processes involving impurities,

which yields a temperature independent mean free path. The temperature dependence

of the thermal conductivity is thus set by the electronic heat capacity, which in the

Sommerfeld theory of metals takes the well-known form:

Cv =
π2

2

(
kBT

εF

)
nkB (2.4)

The use of equation 2.2 combined with the result above yields an estimate for the

electronic thermal conductivity in a metallic system:

κel =
π2

6

(
kBT

εF

)
nkBvF ` (2.5)
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The resulting expression is linear in T , and typically dominates the phonon con-

ductivity at low temperatures. The well-defined temperature dependence of κel at low

temperatures is key to separating the electronic and phononic thermal conductivities.

2.4 Charge transport in metals

In a conventional metal, with an applied electric field E, and electrical current density j

the DC electrical conductivity σ is defined by

J = σE (2.6)

For an electron density n, travelling along the direction set by j the kinetic theory of

transport predicts that the magnitude of the conductivity is given by:

σ =
ne2τ

m
(2.7)

Clearly, the electrical conductivity is greatly dependent on the form of τ , which is

itself dependent on a myriad of potential scattering processes, but in the low temperature

limit is solely determined by impurity scattering, leading to a residual resistivity that is

a measure of the purity of the material.

2.5 The Wiedemann-Franz law

In the limit of elastic scattering at low temperatures, one may take the ratio of the coef-

ficients of thermal and charge transport, which results in the famous law of Wiedemann

and Franz [66]:

κ

σT
=

π2

3

(
kB

e

)2

≡ L0 (2.8)

This relationship tells us that for an arbitrary band structure, the ability of an electron

to transmit heat is closely mirrored by its ability to transport charge, and the ratio of the

two is the Lorenz number L0. This is a fundamental property of conductive materials,

observed to be valid in the low temperature limit in virtually all known materials, from

metals to semiconductors. In superconductors, the law appears to be violated since the

electrical conductivity goes to infinity while the thermal conductivity remains finite. This

is however not a rigorous violation, since the charge 2e Cooper pairs are not heat carriers,
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and transport of heat is accomplished by charge e quasiparticles, which are shorted out

electrically by the condensate.

In overdoped cuprate superconductors the destruction of superconductivity by a strong

magnetic field was seen to reveal a state that obeys the Wiedemann-Franz law in the

T → 0 limit [58], while in underdoped LSCO the results were inconclusive [7]. Testing

the validity of this law in the low doped regime of the YBCO cuprate is the subject of

chapter 12.

2.6 Heat transport by the lattice

In many situations the conduction of heat by vibrations of the lattice (phonons) is often

quite large, and may in some cases dominate the contribution from electrons. Since the

subject of this work is primarily to study the electronic heat conduction in superconduc-

tors, our goal is to correctly model the conductivity of the lattice in order to separate out

electronic and phononic contributions to thermal conductivity. This task was first ac-

complished by Debye and cast into a more modern form by Peierls [67]. We can estimate

the magnitude of this conductivity at low temperatures in an isotropic crystal using the

kinetic theory formulation of Equation 2.2 1.

κph =
1

3
Cphvph`ph (2.9)

In the low temperature limit the phonon heat capacity (Cph) takes the well known

Debye form [63]:

Cph =
∂

∂T

∫
d3k

(2π)3

~ω(k)

e~ω(k)/kBT − 1
∼ 2π2

5
kB

(
kBT

~c

)3

(2.10)

Equation 2.10 tells us that at sufficiently low temperatures, where T ¿ ΘD, the heat

capacity is a cubic function of the temperature. The resulting temperature dependence

of the phonon thermal conductivity is then the product of the cubic in temperature heat

capacity and the temperature dependence of the various scattering mechanisms summed

used Matthiessen’s rule. Table 2.1 summarizes some of the physically important scat-

tering mechanisms that contribute to the phonon relaxation time in the low temperature

limit. In the regime typically accessed by our experiments (T ¿ 1K) most of these are

frozen out except the first, which sets the magnitude of κphonon.

1A more detailed treatment can be found in the books by Klemens and Berman [67, 68]
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Table 2.1: Temperature dependences of τ and κph in the low temperature limit
(T ¿ ΘD). Adapted from P.G. Klemens [67]

Scattering Mechanism τ κph

External crystal boundaries T 0 T 3

Grain boundaries T 0 T 3

Stacking faults T 2 T

Conduction electrons in metals T 1 T 2

Dislocations (strain field) T 1 T 2

Dislocations (core) T 3 T 0

Point defects T 4 T−1

Umklapp processes T 1 T 3eθ/αT

2.6.1 The phonon boundary scattering regime

As the temperature of a sample is cooled 1 K, many of the usual processes which scatter

phonons freeze out, and thus cease to contribute significantly to the relaxation time τ .

As τ increases, so to does the phonon mean free path `ph = vph × τ . Eventually, when

the temperature is lowered far enough, `ph grows to be limited by the physical dimensions

of the crystal itself. The phonon thermal conductivity in this instance is then given by:

κph = 1/3Cph`boundaries (2.11)

where `boundaries is a suitable geometric average of the crystal dimensions. For a rectan-

gular slab of width w and thickness t we define

`boundaries = 2×
√

wt/π (2.12)

In this temperature regime, the mean free path is to first approximation temperature

independent, so that the phonon thermal conductivity is determined solely by the tem-

perature dependence of Cph. For studies of samples with mobile electronic excitations

one typically models the low temperature thermal conductivity as having a T linear con-

tribution from the electrons, as discussed in section 2.3, and a T 3 contribution from the

phonons:

κ = κel + κph = AT + BT 3 (2.13)
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where A and B are constants set by the properties of the electronic and phononic exci-

tations respectively. By plotting κ/T versus T 2 the T = 0 linear electronic term simply

shows up as the y-intercept, with the slope given by the coefficient of the phonon term,

B.

Clearly, if one is interested in an accurate determination of A, the linear electronic

term, then one must be confident that the model describing the temperature dependence

of the phonons is correct. During the course of this study we have developed an empirical

model which appears to improve upon the considerations discussed above. In especially

pure crystals, with exceptionally smooth surfaces, one may find a slight temperature

dependence to the phonon mean free path arising from specular reflection of the phonons

at the crystal boundaries.

2.6.2 Powerlaw fitting: beyond the T 3 approximation

The extension of our measurements into the highly underdoped region of the cuprate

phase diagram, where the linear electronic term κ0/T becomes very small, has led us to

refine the form of equation 2.13. To motivate why this may be necessary, consider the

possible scattering mechanisms available to a phonon impinging upon the surface of a

crystal. The phonon may either be absorbed and re-emitted with an energy distribution

given by the local temperature (diffuse scattering) or it may be reflected elastically (spec-

ular reflection). In the case of diffuse scattering, the phonon is re-radiated in a random

direction resulting in a temperature independent value of `ph and a T 3 dependence of κph

as recognized by Casimir. [69] In studies of low temperature heat transport in diamond

[68], Berman et.al. demonstrated that the effect of phonon specular reflections occurring

with probability 1 − f caused the mean free path to deviate from the geometrical limit

by:

`ph = `geo(2− f)/f (2.14)

where `geo is set by the dimensions of the sample itself. In the limit where no specular

reflections occur, f = 1 and the usual mean free path is recovered, as defined in equation

2.12.

The probability of specular reflection occurring is itself dependent on the characteris-

tic wavelength of the phonon. As the temperature of a crystal is reduced and the average

phonon wavelength increases, a surface of a given roughness appears smoother, which

may increase the occurrence of specular reflection. This in turn leads to a temperature
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Figure 2.1: Low temperature thermal conductivity of the insulator Al2O3. Triangles are for a
sample with a roughened surface, squares are for a sample with a flame polished smooth surface.
The data is plotted as κ vs. T on a logarithmic plot. Specular reflection from sufficiently smooth
surfaces may cause a deviation from the usual T 3 phonon thermal conductivity in the boundary
scattering regime. Data adapted from reference [70].

dependent `ph. Early studies of dielectric crystals have indeed lent support to this idea.

Figure 2.1 shows the effects of surface quality on the low temperature phonon conduc-

tivity in samples of sapphire (Al2O3) [70]. A rough surface produces the expected T 3

temperature dependence while a smooth surface results in a slightly lower power law

owing to the temperature dependence of `ph.

Such an effect has also been observed in high-quality crystals of Si, [71] KCl and KBr,

[72] LiF [73] and diamond. [74]. We indeed see evidence of this behaviour in many of our

cuprate samples, manifesting itself as a gradual curvature in the low temperature part

of our data when plotted as κ/T vs. T 2.

In light of this, we propose that the thermal conductivity in the boundary scattering

regime is more correctly modelled as:

κ = κel + κph = AT + BT α (2.15)

with α < 3.

Here A is the coefficient of the electronic linear term, and B the temperature-independent

coefficient of the phonon term, where α is some power of temperature, typically between

2 and 3. Note that there is no fundamental reason for a single power law - it is simply
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Figure 2.2: Thermal conductivity of the s-wave superconductor V3Si. The data is plotted as κ
T

vs T 1.74, and the line represents a free fit to the data of the form of Eq. 9. The resulting linear
term is zero: 0 ± 1 µW K−2 cm−1, consistent with that expected for a nodeless superconductor.

an empirical result that is well supported experimentally.

In superconductors possessing an isotropic or s-wave gap, the absence of an electronic

linear term at low temperatures reveals this effect well 2. Plotted in figure 2.2 is thermal

conductivity data for the s-wave superconductor V3Si, [75] where the line is the result of

a free fit to a simple power law as in equation 2.15. Such a procedure yields a linear term

A = -0.04 ± 1 µW/K−2cm−1, a phonon coefficient B = 5.73 ± 0.07 mW/K−(α+1)cm−1,

and an exponent α = 2.74 ± 0.01. The validity of such a fitting procedure is best seen by

plotting the data as in figure 2.2, with the x-axis in units of Tα−1. The striking linearity

of the data on this plot, and the fact that it extrapolates to zero, is good evidence for

the appropriateness of this model.

It is worth stressing that the single power-law fitting procedure described here is

simply an empirical approach to extrapolate the most reliable value of κ/T at T = 0.

As a three-parameter free fit to the data over a temperature range typically of a decade

(50 - 500 mK), it is far better than the old two-parameter forced fit to a κ/T = a + bT 2

form, which invariably must be limited to the very lowest temperatures (usually below

150 mK or so) and typically overestimates the value of κ0/T . That such considerations

must be applied to our samples of cuprate superconductors is a testament to the purity

2A theoretical treatment of heat transport in s and d-wave superconductors is given in chapter 3
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and quality of our crystals.
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Low-energy excitations of a d-wave superconductor

3.1 Chapter overview

The d-wave nature of the superconducting order parameter in cuprates governs all of

their low temperature properties. Since the energy gap vanishes along the four nodal

directions, quasiparticle excitations exist to zero energy. This is dramatically different

than the s-wave case, where the fully gapped Fermi surface yields activated behaviour in

low temperature experiments. In this section I review the underlying physics behind the

d-wave nodal excitation spectrum, and discuss its relevance to several important physical

quantities. I summarize the results in both the clean and dirty limits, and discuss the

effects of applying a magnetic field. The results of this chapter are used as the foundation

for interpreting much of the data discussed in later chapters.

3.2 The nodal excitation spectrum of a d-wave supercon-

ductor

There is no longer any reasonable doubt that the superconducting gap in cuprate super-

conductors is of the dx2−y2 form [76, 20], which may be expressed as:

∆(k) = ∆0(coskxa− coskya) (3.1)

Here kx and ky are reciprocal lattice vectors in the x and y directions, a is the (tetragonal)

lattice parameter, and ∆0 is the maximum of the order parameter. Defining φ as the

in-plane angle in reciprocal space that is equal to zero along the kx direction allows us to

simplify this expression. Equation 3.1 becomes ∆(φ) = ∆0cos2φ, which is plotted in the

left hand panel of figure 3.1. The gap vanishes completely along the φ = (2n + 1) π/4

directions, and reaches a maximum at φ = nπ/2, where n =0,1,2.... In the LSCO and

YBCO superconductors the lobes of the d-wave order parameter are situated along the

25
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Figure 3.1: Left : The d-wave order parameter and cylindrical Fermi surface of the cuprate
superconductor. Right : Change of basic vectors from kx and ky to those centered around the
nodal point, a useful basis for describing the low energy quasiparticle excitations.

Cu-O bond directions, while the nodes are along the diagonal.

In a simple tight-binding approximation the Fermi surface of a tetragonal high tem-

perature superconductor may be expressed as:

εk = −2t(coskxa + coskya)− µ (3.2)

where 2t is the in-plane hopping integral and µ us the chemical potential. The energy

spectrum of quasiparticle excitations is then calculated from the sum of the gap and the

Fermi surface energies added in quadrature - E(k) =
√

ε2
k + ∆2

k. If we restrict ourselves

to very low energies we may linearize this spectrum about the nodes. It is convenient in

this respect to switch basis vectors from those collinear with the reciprocal lattice vectors

kx and ky to those whose origin is centered at the node:

k1 =
(kx + ky)√

2
− |k0| (3.3)

k2 =
(kx − ky)√

2
(3.4)

with k1 perpendicular and k2 tangential to the Fermi surface respectively. Linearizing

equations 3.1 and 3.2 about the nodal points k1 = k2 = 0 gives:

ε(k) ' k1
δε

δk
= ~k1vF ; vF = ~

√
2ta sin(k0a/

√
2) (3.5)

∆(k) ' k2
δ∆

δk
= ~k2v2; v2 = ~2

√
2a∆0 sin(k0a) (3.6)
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Figure 3.2: Dirac like excitation spectrum of nodal quasiparticles in a d-wave superconductor.

The parameters vF and v2 refer here to quasiparticle velocities perpendicular and parallel

to the Fermi surface respectively. The excitation spectrum near the node can then be

written in the following form:

E(k) =
√

(vF k1)2 + (v2k2)2 (3.7)

The excitation spectrum is colloquially known as a Dirac spectrum, or Dirac cone when

it is plotted as E(k) along the axis perpendicular to the plane. The relative sizes of the

of the two velocities determine the anisotropy of the cone, plotted in figure 3.2

The persistence of excitations having the spectrum of 3.7 governs the low temperature

physical properties of d-wave superconductors. The density of states from such a spec-

trum is linear in energy, and is determined by the fundamental quasiparticle parameters

vF and v2:

N(E) =

(
2

π~2

)(
1

vF v2

)
E (3.8)

In theory N(E) from equation 3.8 can be used as the basis for calculating most physical

properties, it leads for instance to an electronic specific heat Cel ∝ T 2. We have however

at this point neglected to incorporate the effects of elastic scattering from impurities,

which modifies the energy dependence of the density of states significantly. We can view

equation 3.8 as the clean limit expression for N(E), valid when the effects of impurity
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Figure 3.3: Left : The density of states normalized by Ns as a function of energy in the Born
scattering limit. Curves are for scattering rate Γ/∆ = 0 (solid line), 0.05 (dotted line) 0.2
(dashed line) [77]. Right : The unitary limit density of states, with Γ/∆=0.001 (dotted line)
and 0.1 (solid line). γ denotes the energy scale at which the density of states becomes constant
in energy [78].

scattering are negligible.

3.3 Impurities effects in unconventional superconductors

In standard scattering theory the quasiparticle scattering rate Γ is calculated through

the use of Fermi’s golden rule:

Γ =
2

π~
nimp| < k|U |k′ > |2Nn(0) (3.9)

where nimp is the impurity concentration and Nn(0) is the density of states at the Fermi

level. U is the scattering strength, in the weak (Born) limit U ¿ 1 and in the strong

(unitary) limit U À 1. The effects of scattering in metals, semiconductors and super-

conductors are usually considered within the framework of the self consistent T-matrix

approximation (SCTMA), a perturbative method [11]. The modification of the density

of states is strongly dependent on the scattering strength, as shown in figure 3.3 adapted

from Puchkaryov and Maki [77] and Preosti et.al. [78].

In the Born limit, the slope of the density of states is modified at low energies as

the scattering rate is increased, but N(E) retains some energy dependence even to very

low energies. In the unitary limit, below an energy scale γ that is determined by the

scattering rate Γ, the density of states becomes constant in energy. For experiments that
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probe energies lower than γ, also called the impurity bandwidth, the modified density of

states is seen to dramatically influence quasiparticle behaviour.

The existence of a regime of constant N(E) is understood to arise from the breaking

of Cooper pairs by impurity scattering, and the resulting formation of bound states [79].

The strength of the scattering potential U governs the formation of these bound states

into bands, and determines the scale of γ [80]:

γ = 4∆0exp(−π∆0/2Γn) U ¿ 1, (Born) (3.10)

γ = 0.63
√

∆0ΓN U À 1, (unitary) (3.11)

where ΓN is the normal state scattering rate. Of these scenarios, the general consensus

has been that in the cuprate superconductors scattering is best described as being close

to the unitary limit, evidenced by a strong suppression of Tc with Zn impurity doping

and finite residual density of states density of states [81, 82, 80, 83, 84, 85]. The same

has been found to be true in unconventional superconductors with more complicated gap

topologies, such as UPt3 [86]. Much of the discussion of the results in this work will focus

on low and zero temperature results where kBT ¿ γ, and γ is the dominant energy scale.

We define this as the “dirty” limit, and the case where kBT À γ as the corresponding

“clean” limit.

3.3.1 Universal conductivity

One of the most remarkable consequences of the dirty limit is the existence of univer-

sal transport. In 1993 Patrick Lee [87] noted that the nodal quasiparticles induced by

impurity scattering were scattered in such a way that the decrease in the quasiparticle

lifetime, τ , was exactly compensated for by the growth in the low energy density of states

as impurity concentration was increased. The conductivity in the zero frequency limit in

this “universal” regime displays no dependence on scattering rate:

σ00 =
e2

2π~
2

π

(
n

d

)(
vF

v2

)
(3.12)

where n/d is the number of CuO2 planes per unit cell, and vF and v2 are the quasiparticle

parameters introduced in equations 3.5 and 3.15.

Durst and Lee [59] later considered the effects of vertex and Fermi liquid corrections

to the universal form of 3.12. Fermi liquid corrections arise from the intrinsic interactions
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between the quasiparticles excited from the condensate, while vertex corrections reflect

the fact that back scattering is more effective at degrading a charge current than forward

scattering. With these additions 3.12 becomes:

σ00 =
e2

2π~
2

π

(
n

d

) (
vF

v2

)
βV Cα2

FL (3.13)

Thermal transport in the universal limit was studied originally by Graf et.al. [88] and

later by Durst and Lee [59]. For transport as T → 0 in the dirty limit, the thermal

conductivity has a term linear in temperature governed by vF and v2:

κ0

T
=

k2
B

3~

(
n

d

)(
vF

v2

+
v2

vF

)
(3.14)

The parameter v2 is simply the slope of the gap at the node, showing that the residual

linear term can be used to provide information about the superconducting gap itself:

v2 =
1

~
d∆

dk
|node =

1

~kF

d∆

dφ
|node = v2k̂2 (3.15)

where kF is the Fermi wavevector at the nodal position.

These are remarkably simple formulae, which provide a direct access to the parame-

ters that govern low-energy phenomena in a d-wave superconductor. Not only is the

thermal conductivity universal with respect to impurity concentration, but is robust to

vertex and Fermi-liquid corrections, unlike σ. These features make thermal conductivity

an extremely useful probe of a d-wave superconductor. The universal limit in thermal

conductivity was first established in YBCO by Taillefer et.al. [60], which serves as a

confirmation that the basic formalism derived by Graf, Durst, Lee and others is valid.

The formalism was shown to work remarkably well in optimally doped BSCCO by Chiao

et.al. [89]. Using the residual linear term in thermal conductivity, they estimated the

quasiparticle anisotropy ratio to be 19, which is in perfect agreement with a vF /v2 of 20

from ARPES measurements by Mesot et.al. [90].

3.3.2 Microwave penetration depth

Measurements of the microwave penetration depth have been used from early on to study

the quasiparticle excitations in superconductors. At low T, the temperature dependence

of the penetration depth reveals the temperature dependence of the normal fluid density,

as the superfluid is depleted by thermal activation of quasiparticles:
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ρS(T ) = ρS(0)− ρN(T ) =
mc2

πe2λ2(T )
(3.16)

In s-wave superconductors the normal fluid density is expected to grow in an activated

manner, but in a nodal superconductor it is expected to grow linearly with temperature

[59]:

ρN(T )

m
=

2ln2

π

kB

~2

n

d
α2

(
vF

v2

)
T (3.17)

Used in conjunction with thermal conductivity measurements, which directly probe vF /v2

the value of the Fermi-liquid factor α2 may be revealed, as demonstrated in chapter 8.

3.3.3 Beyond the universal limit

For a sufficiently large scattering rate Equation 3.14 is expected to break down, as the

superconducting order parameter is suppressed to zero by the pair breaking effects of

impurity scattering. Sun and Maki [91] have shown that outside of the universal regime

the thermal conductivity should vary as in figure 3.4 where κ is shown normalized to the

zero disorder limit and plotted as a function of Γ/ΓC (where ΓC is the critical scattering

rate needed to suppress superconductivity altogether).

Figure 3.4: Low-temperature quasiparticle thermal conductivity in the high disorder limit,
adapted from Sun and Maki. The data is plotted normalized to the normal state limit of κ,
versus the scattering rate Γ [91].
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Additional corrections to the universal limit are obtained at finite temperatures. Graf

et.al. [88] have shown that the leading order correction to κ/T is:

κ0

T
=

k2
B

3~

(
n

d

)(
vF

v2

+
v2

vF

)(
1 +

7π2

15

a2k2
BT 2

γ2
0

)
(3.18)

where the constant a is highly dependent on the phase shift (strength) of the impurity

scattering. In the unitary limit a is 1/2, while in the Born limit a = (πv2/4ΓN) where

ΓN is the normal state scattering rate. Such finite temperature corrections have been

observed in our work, as we shall see in chapter 9.

3.4 Thermal transport in a magnetic field

In an extreme type-II superconductor like the cuprates, κ = λ0/ε0 ∼ 100 and a magnetic

field penetrates the material in the form of long tubes of flux. The vortices typically

have core radii of ε ∼ 15 Å and circulating currents that decay over length scales on the

order of λ0 ∼ 1500 Å. The quasiparticle excitations in the mixed state are typically of two

origins - those arising from bound states within the normal vortex cores, and those arising

from bulk excitations with the superconductor coupled to the swirling supercurrents.

3.4.1 κ(H, T ): s-wave case

The suppression of the order parameter in the vortex cores of a type-II superconductor

creates a localization potential that can create bound states. Known as Caroli-de Gennes

bound states, the energy spacing of this spectrum is determined by vortex radius Espacing

∼ ~/mε2, in analogy to the particle in a box scenario of elementary quantum mechan-

ics. Such states were first observed directly with STM [92, 93], and the contribution to

specific heat in the range where kBT À Espacing is [94]:

Ccores(T, H) = γNT (H/Hc2) (3.19)

where γN is the normal state electronic specific heat. If the separation between the vortex

cores is sufficiently large, these states remain localized and are thus unable to contribute

to heat transport. When the field is increased the intervortex separation is reduced, and

tunnelling between adjacent vortices causes some delocalization. This contribution is

expected to grow exponentially with ratio of the vortex spacing to the vortex core size,

such that κ/T ∝ exp(−α
√

Hc2/H) where α is a constant [75]. In order to contrast this

behaviour with the d-wave case in this next section, the field dependence of the electronic
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Figure 3.5: Low-temperature electronic thermal conductivity as a function of field in the el-
emental type II superconductor Nb, adapted from [95]. κ is normalized by the normal state
value, reached when H > Hc.

thermal conductivity at low temperatures (T=0.2Tc) is shown for the elemental type-II

s-wave superconductor Nb in figure 3.5 [95].

3.4.2 κ(H, T ): d-wave case

The nodal structure of the order parameter in a d-wave superconductor makes the effects

of a magnetic field markedly different than that of the s-wave case. Volovik found that

in these materials the contribution from overlapping bound states associated with the

cores in an s-wave superconductor are dominated by extended states from the supercon-

ducting bulk [96]. Volovik’s model considered the effects of swirling supercurrents on the

quasiparticle excitation spectrum, and predicted the excitation energy would be take the

form E(k, A) = E(k) - evk· A where vk is the normal state velocity and A is the vector

potential. The effect of the supercurrents can thus be thought of as a Doppler shift of

energies, and in the case of nodal quasiparticles the basic Dirac form is preserved, shifted

in energy by an amount evk· A. This energy shift is calculated by integrating over a

vortex lattice unit cell of lattice parameter a:

EH = e < vk ·A >=
1

R2

∫
rvF ·Adr = a~

(
2

π

)
vF

√
H

φ0

(3.20)

where a is 0.5(0.465) for a square (triangular) vortex lattice respectively [11]. In fully

gapped superconductors, this energy is typically very small compared to ∆0 but close to
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the vortex cores in nodal superconductors the Doppler shift energy is comparable to the

gap, and population of extended states by field is expected.

How these newly populated states contribute to transport is highly dependent on

the magnitudes of three competing energy scales: the Doppler shift energy (EH) the

impurity bandwidth γ and the thermal energy kBT. In the “clean” regime, where the

Doppler shift energy dominates both kBT and the impurity bandwidth such that EH À
kBT À γ the contribution to thermal conductivity is expected to be linearly dependent

on temperature, and dependent on
√

H. When the thermal energy dominates such that

kBT À EH À γ the thermal conductivity is expected to be the same as the zero field

clean limit case, κ ∝ T 2 with a field dependent correction factor. In between these

two regimes scaling laws are expected in the specific heat [97], with Cel ∝ F (x)T with

x =
√

Hc2

H
T
Tc

. Experimental verification for the Volovik model was found in studies of the

specific heat [98, 99, 100, 101], where a
√

H dependence of the linear electronic term on

field was observed.

Kübert and Hirschfeld [102] calculated the behaviour of the thermal conductivity

in the “dirty” limit, where impurity scattering is the principal energy scale and γ À
EH ,kBT . In the geometry where J ⊥ c and H ‖ c at low temperatures:

κ(0, H)

T
=

κ0

T

ρ2

ρ
√

1 + ρ2 − sinh−1(ρ)
(3.21)

where the effects of vortex scattering have been neglected. The parameter ρ is essentially

the ratio of the two relevant energies - the Doppler shift EH , and γ and the form it

takes is dependent on which energy scale dominates. In the regime where EH < γ and

assuming unitary scattering, ρ is calculated to be [102]:

ρ =
√

6/πγ/EH (3.22)

If the Doppler shift energy is instead the dominant scale, such that EH > γ, then ρ

becomes:

ρ =
8ΓHc2

(π2a2∆0H)0.5 (3.23)

where Γ is the normal state scattering rate, a is the vortex lattice constant and ∆0 is

the superconducting gap maximum. This model was found to give a good quantitative

description of the evolution of the residual linear term with field in the dirty limit, in

both pure and Zn-doped YBCO as seen by Chiao et.al. [61].
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Experimental techniques

4.1 Chapter overview

The measurement of thermal conductivity at temperatures as low as 40 mK and in ap-

plied fields as large as 13 Tesla requires a significant amount of expertise in cryogenic

infrastructure. A great deal of careful planning was necessary to design reliable probes

and mounts to operate in this challenging environment, work that has been shared by

the numerous postdocs and graduate students that have passed through our group. The

following sections describe our two principal measurement systems: a 4He dip probe

capable of temperatures as low as 1.5 K, and a Kelvinox 300 dilution refrigerator capa-

ble of continuous operation at temperatures down to 40 mK. In this chapter I provide a

comprehensive overview of our technique and our thermal conductivity mounts, with em-

phasis on the analysis of possible sources of heat losses and experimental errors. Further

information on low temperature techniques in general may be found in reference [103].

In the last section of this chapter the experimental setup and techniques for measure-

ments of resistivity in pulsed fields is discussed. A series of such high field measurements

was performed at the Laboratoire National des Champs Magnétiques Pulsés, Toulouse,

France.

4.2 Cryogenic inserts

4.2.1 4He dip probe

For temperatures above 1 K, resistivity and thermal conductivity measurements were

performed on a custom built 4He dip probe capable of operating in the 1.5 K - 150 K

temperature range. The samples were mounted on a sample stage affixed to the bottom

of a 1 K pot, and were enclosed in a vacuum can typically pumped to p ∼ 1× 10−6 Torr

by a turbo pump. The pot was cooled by continual pumping with a rotary pump. Leads

35
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to the mount were made mainly of resistive alloys such as manganin and constantan

and are thermalized around posts at various points in the system to minimize the heat

conducted through the leads from room temperature. Resistivity curves were typically

obtained by pumping out the vacuum can and immersing the probe in Helium, taking

measurements as the sample slowly cooled from room temperature. The key assumption

is that the sample and principal thermometer are isothermal during cool down.

Thermal conductivity measurements as a function of temperature were made by sweep-

ing the base temperature upwards and allowing sufficient time for the sample temperature

to stabilize at each point. By controlling the flow of helium through the 1K pot, it was

possible to obtain temperatures as low as 1.4 K in our apparatus, with a stability of ± 10

mK. A detailed description of the construction of this probe can be found in the thesis

of Etienne Boaknin [104].

4.2.2 Dilution refrigerator

To access temperatures below 1 K we use a commercially built Oxford Kelvinox 300 dilu-

tion refrigerator, The fridge was inserted into a custom built 13/15 Tesla superconducting

magnet from Oxford instruments, which had a field compensated zone around the mixing

chamber to eliminate any effects of magnetoresistance on our primary thermometry.

In a dilution fridge, cooling is achieved by using the unique properties of mixtures

of two isotopes of Helium, 4He and 3He [105]. For concentrations of less than about

60% 3He, cooling below the so-called “lambda line” brings the system into a phase

characterized by a dilute Fermi liquid of 3He in a superfluid of 4He. Further cooling

sees the system phase separate, with the lighter 3He forming a layer on top of the more

dense 4He, akin to a mixture of oil and water. From a technological standpoint, dilution

refrigerator technology exploits the fact that there exists a finite solubility of 3He in 4He

as T → 0.

Operation of the fridge unit is achieved by submersing it in a 4He bath, and cooling

the 1 K pot by pumping. 3He/4He mixture is allowed to condense inside the unit, and

when it is sufficiently cold it phase separates, with the phase boundary lying within the

mixing chamber. Pumps are then connected to the still pumping line, which preferentially

removes 3He from the still since it has a vapour pressure some two orders of magnitude

greater than 4He at the same temperature. This sets up a concentration gradient in the

mixing chamber, causing 3He from the upper part of the mixing chamber to cross the

phase boundary and enter the dilute phase of 3He dissolved in 4He. The 3He that has
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Figure 4.1: Schematic diagram depicting the one heater two thermometer method of thermal
conductivity measurement. The heat flows in through one face of the crystal to thermal ground,
and the resulting thermal gradient is measure at two thermometers denoted by T+ and T−.

been pumped out is then allowed to cool and re-enter the mixing chamber through the

high impedance condenser line. The process is continuous, and the fridge can stay cold

for durations on the order of several weeks or months.

The cooling power of this process can be estimated by noting that the heat absorbed

from the surroundings by n moles per second of 3He crossing the phase boundary is

simply:

dQ

dt
=

dn

dt
T (Sdilute(T )− Sconcentrated(T )) (4.1)

where S refers to the molar enthalpies of the 3He in the dilute and concentrated phases.

Treating the 3He as a simple Fermi gas and calculating the enthalpies of the phases [33]

yields dQ/dt = 84dn/dtT 2 Watts for T < 100 mK. In the Kelvinox 300 used in our

laboratory, this cooling power is as large as 250 µW at 50 mK. This is sufficiently great so

that the heat load from the 50 leads that run from the experiment to room temperature

does not affect the temperature of the fridge. While circulating, stability of the unit is

typically on the order of ± 0.1mK at 50 mK.

4.3 Measurement of thermal conductivity

4.3.1 Basic theory

All of our thermal conductivity measurements were performed with a two heater steady

state technique. The basic principle of the measurement is very similar to a standard four

wire resistivity measurement, and is shown schematically in figure 4.1. The sample is

affixed on one end with conductive paste to thermal ground, and heat (Q̇) is introduced

into the opposite end of the crystal, setting up a thermal gradient ∆T . The temperature

of the crystal is sampled at two locations on the crystal, separated by a length `. The
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temperature difference ∆ T = Thot - Tcold and the input heat current are used to calculate

the thermal conductivity κ of the sample:

κ =
Q̇

∆T

`

σcross

(4.2)

Here σcross is the cross sectional area of the crystal, which for a uniform platelet is

just the width (w) × thickness (t). The error in our measurement is typically dominated

by the error in determining the geometric factor, on the order of 10 % - 20 %. This error

is usually set by the difficulty in defining the separation of the voltage pads, as measured

under an optical microscope.

4.3.2 Thermal conductivity mounts

The mounts used in our measurement are of slightly different designs depending on the

temperature range of use. Our high temperature thermal conductivity mounts for use in

the 4He probe are described in detail elsewhere [104]. Here we will concentrate on the

design of the mounts used in low temperature dilution fridge measurements, with which

the majority of the κ data presented in this Thesis was taken. The high temperature

mounts are similar in design, but slightly different geometries and materials are used in

construction.

A schematic diagram of one of these mounts is shown in Figure 4.2. Two uncalibrated

RuO2 chip resistors are affixed to the sample with conductive silver wires, and the sample

is mounted on a large Copper block firmly bolted to the Copper tail, which is isothermal

with the mixing chamber. Heat is provided by passing a small current (I) through a

strain gauge, which has a temperature independent resistance R of approximately 10 kΩ.

By measuring the current to the heater, one may estimate the amount of heat provided

to the sample via Joule heating; Q = I2R.

In order to obtain as accurate data as possible, we recalibrate the RuO2 sensors during

each run. The basic methodology of our measurement is as follows. The dilution fridge

is set to the desired temperature, then allowed to sit for a period of time until the ther-

mometers on the sample no longer change with time. A measurement of the resistances

of the thermometers is then made with no heat applied, and is compared to the principal

Germanium thermometer on the mixing chamber, which is in a field compensated zone

in the magnet. The Ge resistor itself (model GR-200A-30), was manufactured and in-

dependently calibrated by Lakeshore instruments down to 50 mK. Heat is then applied

to the sample, the thermometers are allowed to stabilize again, and a measurement of
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Figure 4.2: A Schematic diagram of a mount used in our measurements of thermal conductivity.
The geometry is dubbed “the washing line configuration” since the thermometers and heater
are suspended by 7µm thick Kapton tape strung up between Vespel posts. Heat is provided
by passing current through a resistive strain gauge, and temperature is recorded by measuring
the resistance of RuO2 chips.

their resistance is made. By repeating this many times, we then have a calibration for

the thermometer resistance versus temperature from the heat off points, which we can

use to estimate the thermometer temperatures with the heat on. This method minimizes

uncertainties due to thermometer calibrations, and introduces at most a 1% error into

our measurements.

4.3.3 Electronics

The measurement of the resistivity of the RuO2 sensors is accomplished using a Linear

Research LR-700 resistance bridge operating at 16 Hz. The measurement current was

chosen to be as small as possible to eliminate any self-heating of the thermometers. Typ-

ical currents were in the 1 - 3 nA range, which had negligible impact on the thermometer

temperature at 40 mK. Prior to June 2002 thermometer resistances were measured using

an Stanford research SR-830 series lockin amplifier, which was later abandoned due to

the multiplexing capabilities of the LR-700. All sample resistivity measurements were

made using either the LR700 or SR830 devices.

Heat was provided to the strain gauge with ultra high stability, low noise Keithley

220 and 224 current sources, which allowed incremental changes in the heater current as

small as 5 nA. The overall fridge temperature control was maintained with a Lakeshore



4: Experimental techniques 40

model 370 AC temperature controller, with very high long term stability.

All leads to the tail were passed through a home made filter box consisting of low

pass filters to eliminate any heating from rF frequency radiation. The entire system is

automated to run under LabviewTM, and the computer is optically isolated from the

measurement system with fibre optic cables to eliminate electrical coupling to the exper-

iment. In addition, the entire magnet cryostat and electronics are enclosed in a Faraday

cage to further screen the measurement.

4.3.4 Analysis of heat losses

One of essential design requirements of a thermal conductivity mount is to ensure that all

of the heat which is generated by the heater travels through the sample to thermal ground,

and is not lost through other routes. Heat losses in the thermal circuit are generally of

three types. If the heater temperature is much higher than the base temperature, heat

may be lost via radiation. If there is residual exchange gas within the sample chamber,

heat may be conducted away from the heater through the gas itself. Finally, if the

thermal impedance of the sample plus contacts is too high, heat may travel down the

resistive electrical leads of the thermometers, or along the Kapton support structure. We

briefly look at each of these mechanisms, and obtain estimates for the amount of heat

lost by each. This exercise gives added confidence in the reliability of our technique, and

the robustness of the design of our thermal conductivity mounts.

Radiative heat losses

Heat transfer between two parallel plates by radiation in a near vacuum is treated by

the Planck law. Heat losses could occur via this mechanism if heat from the heater is

radiated away to the base of the tail. For two plates of surface area A at temperatures

T2 and T1 the rate of heat transfer is [106]:

Q̇[Watt] ∼ σA(T 4
2 − T 4

1 )
ε1ε2

ε1 + ε2ε1ε2

(4.3)

where σ is the Stefan-Boltzmann constant σ = 5.67 × 10−8Wm−2K−4, ε1 and ε2 are

the emmissivity of the plates, and are equal to one for a black body. A typical heater

temperature would be approximately 55 mK when the fridge is at 50 mK. For a heater

surface are of 1 cm2 then Q̇ ∼ = 1.6 × 10−15 W per square cm of tail, where we have

assumed ε1 = ε2 = 1. Thus the heat transfer from this mechanism is negligible. In



4: Experimental techniques 41

the 4He probe this effect is much larger due to larger thermal gradients, but has been

calculated to have a small impact on our measurements [104].

Heat Losses through exchange gas

At the low temperatures and pressures typically found in the sample space of our cryostats

the mean free path of a residual gas molecule is much larger than the dimensions of the

cryostat itself (the Knudsen condition). In this extreme environment Corruccini [107, 33]

showed that the heat transfer rate between two parallel plates of surface area A with a

temperature gradient ∆T between them is given by:

Q̇[Watt] ∼ 0.02aA[cm2]p[mbar]∆T [K] (4.4)

where a is a coefficient dependent on the adhesiveness of gas on the walls of the IVC, a

= 1 for a very rough surface and 0.025 for a smooth metallic surface. For IVC walls at

4K with a vacuum of 1 × 10−7 mbar and a sample surface area of 1 mm2 this works out

to be on the order of 10−12 W per mm2 of IVC can. It is clear that these considerations

do not affect us much in the fridge. In the 4He probe however, higher IVC pressures and

larger ∆T ( ∼ 100K ) can begin to affect the measurement at high temperatures. For

this reason, we truncate our dipper measurements at 150 K, the point at which we can

still be relatively sure that our measurement is unaffected 1.

Heat Losses through the mount

Heat losses through conduction via the mount structure are potentially from two paths:

the leads to the thermometers and the Kapton supporting strips. The leads to the

heater and thermometers are made of coiled PtW wires (model 479 from Sigmund Cohn

Corporation) with resistances of approximately 150 Ω each. For later experiments on

highly underdoped cuprates some of the leads were replaced with 12 µm PtW wires with

resistances of 500 Ω or greater.

The resistance of the RuO2 thermometers are measured using a four point technique,

so there are two current and two voltage leads for each. There are also two leads to the

heater, and an additional three leads for electrical resistivity measurements, for a total

of 13 electrical leads in the thermal circuit. Each of these leads contains a coiled segment

of resistive PtW wire which has a residual resistance of approximately 150 Ω, acting to

1For a detailed treatment of heat losses in the 4He probe see Appendix A of the thesis of Etienne
Boaknin [104]
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Figure 4.3: Conductance of selected samples divided by temperature, shown over the range in
which the dilution fridge experiments are typically performed. The conductance of the Kapton
strips and PtW wires used in the mount construction is plotted using the estimates of Kapton
conductance from Radebaugh [108]. In each of these cases shown, the conductance of the heat
loss path is much lower than that of the sample, meaning heat losses are negligible.

prevent the flow of heat from the sample to thermal ground. Using the Wiedemann-Franz

law with L0 = 2.45 × 10−8WΩ/K2 we find that the thermal conductance of each coil is

κ = L0T/ρ = 1.6 ×10−7mW/K T, provided T < 1 K.

The “washing line” supports for the thermometers are made of 7 µm thick strips of a

resistive polyamide film (Kapton HN30 from Dupont), which are anchored to the mount

on Vespel posts with Ge varnish. The Kapton was cut into 3 strips of length ∼2 cm and

width ∼0.1 mm, with the thermometers and heater lying in the middle. The thermal

conductivity of the Kapton films has been investigated at cryogenic temperature by a

number of authors [109, 110, 111, 108].

Using the average of Barucci and Radebaugh’s values for Kapton, we may estimate the

total conductance of the heat loss path through the wires and supports to be 13× 1.6×
10−7+6×3.85×10−2 mW cm−1×7×10−6 = 3.7×10−6mW/K× T. In this calculation we

have completely ignored any added phonon Kapitza resistance at the various junctions in

the system, which may be considerable at low temperatures. Experimentally the Kapitza

resistance is observed to grow as T−(2−4) for many materials in the low temperature limit

[112]. Although it is difficult to know the size of the thermal boundary resistances in our

setup exactly, we may view the preceding estimate as a very conservative lower bound

on the heat loss conductance.
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A plot of the conductance of the heat loss path alongside the conductance of many of

the samples measured with our setup is shown in figure 4.3. In the majority of the cases

the conductance of the samples is much greater than that of the heat loss paths, but for

highly resistive samples we are careful to check that heat losses are not occurring with

additional tests.

4.4 Test of mount accuracy: the Wiedemann-Franz law in

metallic systems

Figure 4.4: The recovery of the Wiedemann-Franz law in the field induced normal state of the
overdoped cuprate Tl2201. The thermal conductivity data is plotted as κ/T versus T 2, and
the thick line is the value of L0/ρ at 13 Tesla, where superconductivity is suppressed. Adapted
from reference [58].

Over the past 5 years our low temperature thermal conductivity mounts have been

continually upgraded and refined to improve their thermalization time, and minimize

heat losses. The most accurate test of our design is to measure both heat and charge

conductivity on a metallic sample, and recover the Wiedemann-Franz law. This was

achieved with silver wire, LuNi2B2 [75], NbSe2 [113], Sr3Ru2Ru7 [114] and CeCoIn5 [115].

Perhaps the finest example of this is shown in figure 4.4 which shows measurements of heat

and charge on the cuprate superconductor Tl2201 in the strongly overdoped region of the

phase diagram [58]. At sufficiently high fields superconductivity is suppressed revealing
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Figure 4.5: Resistivity mount for measurements in pulsed magnetic fields. The probe inserted
such that the magnetic field is ⊥ to the face of the crystal.

a metallic state that conducts heat precisely as predicted through measurements of the

electrical resistivity and the Wiedemann-Franz law. Given the high magnetic fields and

extremely tiny samples used, this can be seen as an excellent validation of the performance

of our experimental setup.

4.5 Measurements of resistivity in pulsed magnetic fields

In YBCO crystals with intermediate dopings, the static magnetic fields available in our

laboratory are unable to suppress superconductivity entirely, since Hc2 is too large. In

order to study transport in the normal state of a sample with y=0.5 we performed

measurements at the Laboratoire National des Champs Magnétiques Pulsés in Toulouse,

France with the assistance of Cyril Proust and Marc Nardonne of the CNRS 2.

Pulsed magnetic field strengths of up to 60 Tesla are available at this facility for brief

periods of time. The magnets are made of reinforced Copper, and connected to a large

central capacitor bank which is charged to 20 kV. When the bank discharges, currents

on the order of 40,000 Amps flow through the magnet, for a typical pulse length of 0.3

seconds. The main drawback of such a technique is that the surge of current produces

large Joule heating. After a pulse it requires on the order of an hour to cool the magnet

2The data is presented and discussed in section 11.4
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back down to operational temperatures, making a ρ vs. T curve painstakingly slow to

accumulate.

Two YBCO6.50 samples were mounted in a simple sample holder as shown in figure

4.5. The crystals were held in place with grease with H ‖ c to minimize the vibrations

associated with the large field gradient. Data was collected on two probes - a 3He probe

spanning the temperature range from 0.3 K to 1 K, and a 4He probe spanning the

range from 1K - 50 K. For each data point, the sample was allowed to stabilize and the

temperature was recorded before and after the pulse to ensure there were no heating

effects from the field. The field strength was measured by recording the voltage induced

through a small pickup loop of area S aligned perpendicular to the field such that Vpickup

= -S dB/dt.

Resistivity measurements were performed with a Stanford Research lock-in amplifier

operating at 20-40 kHz, with a measurement current of ∼400µA. The data acquisition

card operated with an 80 kHz sampling rate, sufficiently fast to ensure a large density

of points for the brief window when the pulse was at maximum amplitude. In general

we use the data points on the downward sweep of the pulse, but check to make sure the

overall hysteresis is small.



5

Physical characteristics of Y-based superconductors

5.1 Chapter overview

In this chapter I review the basic chemistry and structure of several relevant high-Tc com-

pounds, focusing primarily on the Yttrium based superconductor YBa2Cu3Oy (YBCO).

The availability of ultra-pure single crystals of YBCO from the group of Hardy, Bonn and

Liang at the University of British Columbia has made much of the work in this Thesis

possible. In such pure samples complex meta stable arrangements of oxygen are possible,

and I review work in this area. I also discuss the intriguing phenomena of room tempe-

rature oxygen annealing in low doped YBCO, where the carrier concentration evolves as

a function of time spent annealing at 300 K. Such a phenomena is the basis for much of

the work presented in chapter 12 of this Thesis.

5.2 Motivations for studying YBa2Cu3Oy

There are to date about 44 known families of structurally and chemically distinct cop-

per oxide superconductors [12], with the discovery rate trailing off to near zero in the

past few years. These materials have widely varying structures, with different chemical

compositions for the charge reservoir layers, and different numbers of adjacent stacked

CuO planes. At one extreme is the so-called “infinite layer phase” Sr1−xCaxCuO2 which

has CuO2 planes with no intermediate insulating layers. At the other extreme are the

single plane cuprates such as Tl2Ba2CuO6 which have only one CuO2 plane separated

by intermediary layers. Amongst this chemical zoo we choose to focus our experimental

work on one particular group of compounds, the Yttrium based Y-Ba-Cu-O family. We

investigate the fully oxygenated YBa2Cu4O8 (Y124) compound which has a Tc of 81 K,

and the YBa2Cu3Oy (YBCO) compound at a variety of oxygen concentrations y.

Our reasons for studying this family are threefold. First, and most importantly, these

crystals can be made with the highest quality of any of the cuprates. Evidence for

46
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this comes in the form of extremely high chemical purity (99.99 - 99.995%), very weak

magnetic flux pinning due to a low defect concentration, and exceptionally sharp x-ray

rocking curves [116]. There is also strong evidence for exceedingly long electronic mean-

free paths, on the order of 1µm [117, 118]. Second, it is possible to control the doping (by

controlling the oxygen concentration) to produce samples which cover the doping range

from Mott Insulator (y=0) to slightly past optimal doping (y = 7.00). This allows us to

investigate the evolution of the ground state of the electronic system as it evolves from a

correlated insulator to a high temperature superconductor. Finally, highly underdoped

YBCO of sufficient purity has a carrier concentration which slowly evolves as a function

of time spent at room temperature. We exploit this remarkable property to allow us to

tune the hole concentration over a small range within the same crystal, allowing us to

scan the phase diagram through the onset of superconductivity at low dopings.

5.3 YBCO crystal structure

YBa2Cu3Oy formally belongs to a class of structures known as Perovskites and the unit

cell can be seen in figure 5.1. The polyhedra are drawn to show the configuration of the

planar copper atoms and their immediate oxygen neighbours. At each vertex there is

an oxygen atom. The crystal structure is orthorhombic near optimal dopings, slightly

elongated along the b-axis. There is an orthorhombic-tetragonal structural transition

which occurs as oxygen is depleted, at around a concentration of y = 6.4 [119]. One of

the key features of the Y123 compound, which is not present in the LSCO or BSCCO

systems, are the existence of Copper-Oxygen chains which run along the b-axis in be-

tween the insulating Ba-O layer and the CuO2 plane. These chains contribute their own

electronic states to the overall conductivity of the crystal, as evidenced by the a-b resis-

tivity anisotropy [120]. It is the addition and removal of these chain oxygen atoms that

controls the concentration of holes doped into CuO2 basal planes.

5.4 Oxygen ordered phases

For fully oxygenated YBCO crystals (y = 7.00) the CuO chains running along the crystal-

lographic b-axis are completely full: there are no vacant oxygen chain sites. During crystal

growth domains in which the chains are aligned in a parallel fashion are formed, and this

structure is known as ortho-I ordering. These domains are essentially 3-dimensional in

nature, and may measure anywhere from a few hundred Å to many microns in length
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Figure 5.1: Schematic representation of the unit cell of the cuprate superconductor YBa2Cu3Oy.
The essential structural element is the CuO2 planes, as realized from very early on by Anderson
[13]. The planes are separated by insulating layers, making the overall structure highly 2
dimensional.

[121]. In typically prepared crystals however true long range order is prevented by the

formation of twin boundaries, where neighbouring ortho-I ordered domains meet in such

a way that their chain orientations are perpendicular. This phenomena is known as

twinning, and may be easily observed using a polarized light microscope.

Away from optimal doping, the removal of oxygen from the YBCO structure intro-

duces vacancies into the chain sites. Early on it was noticed that underdoped crystals

that were cooled rapidly after growth had a lower Tc than those of an identical oxygen

concentration that had been allowed to age at room temperature [122, 123]. For exam-

ple, a crystal with y = 6.45 with an initial Tc of 39 K was observed to increase to Tc =

46 K after one month of annealing at 300 K [124]. This was interpreted as an enhance-

ment in the charge transfer between the chains and planes that is dependent not only

on the overall oxygen concentration, but the degree of local oxygen order [124, 125]. In

crystals rapidly quenched from high temperatures the oxygen is distributed more or less

randomly throughout the lattice, but may form domains of local order over time if the

oxygen mobility is large enough and the samples are allowed to anneal for long periods

of time. In high purity crystals with few defects, this effect is particularly pronounced.
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Figure 5.2: Schematic representation of the observed oxygen ordered phases in YBCO. The
blue circles represent the larger oxygen atoms and the green the copper atoms. The chains
run along the crystallographic b-axis. Incomplete ordering is observed when the mobility of the
oxygen vacancies is impaired by defects in the crystal structure, or when insufficient annealing
time has elapsed [124].

The variety of local oxygen ordered phases is rich, and considerable effort has been

made towards identifying and classifying these oxygen superstructures. The fingerprints

of these phases may be found in diffraction experiments, where superstructure reflections

with periodicity ma along the a-axis are found at the reciprocal lattice vectors Q =

(n/m, 0, 0) where n and m are integers and m denotes the superstructure periodicity.

To date, ordered phases with m = 2,3,4,5 and 8 have been observed experimentally

[121] and are colloquially named ortho-II, ortho-III, ortho-IV, ortho-V and ortho-VIII

ordering respectively. The corresponding periodicity in real space is observed in sequences

of alternating full and empty Cu-O chains, meaning the unit cell is increased by a factor

of m along the a-axis correspondingly. Figure 5.2 shows a schematic representation of

the organization of the chains for these phases.

The only true equilibrium states are the ortho-I state and the tetragonal phase (ob-

served for y < 6.35 ). The oxygen order phase diagram as a function of temperature and

doping has been the subject of careful study using hard x-ray diffraction, which is a bulk

probe because of the large penetration depth of high energy x-rays (on the order of a 1

mm). Using data on samples grown by the UBC group [121, 126], the phase diagram

shown in figure 5.3 can be constructed. In the doping range 6.32 < y < 6.60 only the

ortho-II superstructure is observed to be stable, while for y > 6.82 only the ortho-I phase
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Figure 5.3: Temperature-Doping phase diagram for oxygen ordered phases in YBCO. The
data is compiled from x-ray studies on high quality single crystals [121, 126, 127, 128]. The
correlation length of the phases depends strongly on the crystal quality, the procedure used
for cooling the samples from growth temperatures, and the post-growth annealing time and
temperature.

is seen. There are small islands of stability for the ortho-III and ortho-VIII phases for

6.6 < y < 6.8 and the ortho-V phase is observed to co-exist in the same doping range as

ortho-II order. Close to the SC-AFM boundary , where 6.28 < y < 6.32, the ortho-III

inverse phase (two empty and one full chain) is observed along with both ortho-I and

ortho-II order, making preparation of homogenous crystals in this regime particularly

challenging. All ordered orthorhombic phases for m ≥ 2 are destroyed when heating

above about 180 ◦C, where only ortho-I ordering is observed.

In addition to enhancing the number of holes transferred from the chains, the existence

of long range oxygen order has important secondary effects on electronic properties since

disordered vacancies can act as vortex pinning and electronic scattering centres. Evidence

for the role of oxygen order in vortex pinning was found in measurements of magnetization

[129, 130] of YBCO crystals. Watahiki and co-workers for instance found that changing

the oxygen concentration in a sample from y=7.0 ( all chains full ) to y=6.95 greatly

increased the magnetization hysteresis, consistent with an enhanced pinning of vortices

by oxygen vacancies. The ability to prepare samples free of oxygen disorder is thus

extremely advantageous in investigating the intrinsic properties of YBCO, allowing one
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to mostly ignore effects associated with scattering from disordered oxygen vacancies.

5.4.1 The influence of oxygen ordered phases on hole doping and Tc

Veal and Paulikas have proposed a simple microscopic model [131] based on the chemical

valences of the atoms in the YBCO structure which demonstrates the unique dependence

of hole doping upon local ordering of oxygen vacancies. They take the generally accepted

view that Cu atoms that are surrounded by two neighbouring oxygen atoms (2 coordi-

nated) are monovalent. Cu atoms that are 3 or 4 coordinated are divalent, and all oxygen

are O2− unless charge balance requires O1− (and consequently Cu3+). The number of Cu

atoms with a formal valence of 3 is then taken to be equal to the concentration of holes,

since charge balance requires them to accept a hole from the Cu-O plane.

The effects of increasing oxygen order results in decreasing the average co-ordination

number of each copper atom. This is turn alters the valence from Cu2+ to Cu1+, drawing

an electron from elsewhere in the structure, and creating a charge vacancy (hole). To see

how this works in practice we consider the effects of perturbing the fully ordered ortho-II

structure in figure 5.4. In the ordered phase, all of the copper atoms in the chains are

4-fold coordinated - two oxygen atoms on either side along the b-axis, and two oxygen

atoms in the apical sites above and below. Their valence is thus +2. The copper atoms in

the empty chains are only two coordinated with the apical oxygen, and have a valence of

+1. Disordering the structure by moving an oxygen from a full chain to an empty chain

site has two effects. First, the Cu atoms at the old site move from a 4-fold to a 3-fold

coordination - with no resulting change in valence. The two copper atoms adjacent to the

oxygen at the new site however change from 2-fold to 3-fold coordination, and each see

their valence change from +1 to +2 as they give up an electron to form the usual oxygen

bonding condition of O2−. This means that they can no longer serve as electron acceptor

sites, causing the hole concentration in the planes below to decrease by 2. In addition

to providing a microscopic mechanism for order induced doping, this model works quite

well in describing the evolution of Tc with doping in the YBCO system, reproducing the

60K plateau observed around y = 6.6.

5.4.2 Oxygen annealing rates

The rate at which local oxygen order is increased is strongly dependent on the anneal-

ing temperature, the elapsed time, and the overall oxygen concentration. Of particular

interest to our work is an accurate knowledge of the rate at which the superconducting



5: Physical characteristics of Y-based superconductors 52

ortho - II

a

b

Figure 5.4: The microscopic model of Veal and Paulikas [131] describing the dependence of hole
concentration on oxygen coordination. Disordering the ortho-II structure by moving an oxygen
atom from a full chain site to an empty one changes the valence of the copper atoms adjacent
to the new site from +1 to +2, thus removing two holes from the plane.

critical temperature increases with time spent at room temperature. In extremely low

doped samples, it is possible to use this effect to tune between the non-superconducting

and superconducting states simply by allowing a sufficiently long annealing time to elapse.

Detailed investigations of the dependence of Tc on annealing time have been performed

in Tl2Ba2CuOy and YBa2Cu3Oy at ambient [122, 124, 132, 133, 123] and high pressures

[134, 135, 136]. Such dependence has been analysed in terms of a simple model by Veal

and Paulikas discussed above, and found to give the following dependence of Tc on time

[123]:

Tc(t) = Tc(∞)− [Tc(∞)− Tc(0)]exp[−(t/τ)1/2] (5.1)

Here Tc(∞) and Tc(0) are the final and initial transition temperatures respectively, t is

the elapsed time since crystal growth was stopped, and τ (which is doping dependent) is

a characteristic time constant of the oxygen annealing process.

Using measurements of magnetization Jorgensen et.al. [123] have studied the evolution

of Tc in a highly underdoped sample of YBa2Cu3O6.41, and found excellent agreement to

the expected form of equation 5.1, with a time constant τ = 386 minutes.
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5.5 YBa2Cu4O8: structure and properties

The cuprate superconductor YBa2Cu4O8 is closely related to the YBCO-123 compound

with one important distinction. The unit cell of this material is shown in figure 5.5 and

is seen to be orthorhombic in character[137], with a double layer of CuO chains between

the CuO2 planes. These chains are completely full, having two interesting consequences.

First, the double chains exclude the possibility of forming twinned domains in the grown

crystals, and secondly the absence of any oxygen vacancies in the chains means that

samples are grown essentially disorder free.

Figure 5.5: The crystal structure of the double chain cuprate superconductor YBa2Cu4O8, or
YBCO-124. The compound is naturally underdoped, with a Tc of 81 K, and can be prepared
with extremely low levels of disorder.

The Tc of this material is measured to be about 80 K [138], and doping by the removal of

oxygen destabilizes the crystal structure. This 15 % reduction of Tc with respect to the

optimally doped YBCO-123 compound is believed to signify that the material is in fact

in a naturally underdoped state. Proof of this has been provided by many authors who

observe a pseudogap in the normal state, akin to that observed in underdoped YBCO-
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123. Studies of spin-lattice-relaxation rate [139], Knight shift [140], resistivity [141] and

thermopower [142] have put the characteristic crossover temperature T ∗ of this gap at

160 - 250 K.

5.6 La1−xSrxCuO4: growth and structure

Much of the thermal and charge transport data on YBCO presented in later sections

is best understood by placing it in the context of results on the La1−xSrxCuO4 (LSCO)

system1. LSCO is a double layer cuprate with two structural phases, orthorhombic and

tetragonal. The lattice constants in the tetragonal phase are a = 3.812 Å and c = 13.15

Å and a = 5.35 Å, b = 5.40 Å in the orthorhombic phase, where the orthorhombic

planar unit vectors are shifted 45 ◦ from the tetragonal ones. Doping may be achieved by

either intercalation of oxygen, but is more usually accomplished by cation substitution

of Ba2+ or Sr2+ for La3+. This cation substitution creates much larger in plane disorder

than in YBCO, although the chemical and crystal perfection of the two systems may be

comparable. The enhanced disorder over YBCO is a theme we shall revisit many times

in comparing the data on the two systems.

1The study of transport in LSCO is the primary component of the Thesis of Dave Hawthorn, and is
discussed fully in that work [62].
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Sample preparation and characterization

6.1 Chapter overview

In the following chapter I detail the physical characteristics and preparation of the sam-

ples used in this study. The YBCO crystals were obtained from three separate sources.

Good quality single crystals of YBa2Cu3Oy in the doping range y = 6.6 to y = 6.95 were

grown in Yttria stabilized Zirconia (YSZ) crucibles by Robert Gagnon at McGill Univer-

sity and Harry Zhang at the University of Toronto. Ultra high purity samples of y=6.33,

6.35, 6.5 and 6.99 grown in BaZrO3 (BZO) crucibles were obtained from Ruixing Liang,

Walter Hardy and Doug Bonn at the University of British Columbia. Our YBa2Cu4O8

samples were provided by Nigel Hussey at the University of Bristol.

The exact procedure for Oxygen annealing and sample detwinning are discussed, and

the development of a new technique for obtaining good quality low resistance contacts on

YBCO using thin films of evaporated gold is presented. Our samples were characterized

by measuring resistivity, and in some cases AC susceptibility. This data is then used to

establish the superconducting critical temperature, and to estimate the relative amounts

of disorder in our samples. From our measurements of Tc, we then obtain an estimate of

the planar hole concentration, p, using an empirical relation from the literature.

6.2 Preparation and growth of YBCO samples

6.2.1 Preparation of ultra high purity BaZrO3 grown YBCO samples

Flux grown YBCO single crystals are prepared at high temperatures, and the Y2O3-BaO-

CuO melt is known to be very reactive. Contamination from the growth crucible itself

is typically the principal source of impurities in these materials. Y2O3 stabilized with

ZrO2 (YSZ) is usually used to minimize this contamination since Zr4+ has little solubility

in the melt and YBCO lattice [116]. Commercially available YSZ crucibles however are

55



6: Sample preparation and characterization 56

only 99 % pure, which limits the final crystal purity to only 99.9 % despite using starting

materials that are considerably more pure. To overcome this limit Erb. et.al. [143, 144]

developed the use of homemade BaZrO3 crucibles which are much less reactive with the

melt, and can be prepared to higher levels of purity.

These superior crucibles were adopted by the group at UBC [116] and have resulted

in the growth of some of the most pure samples of the YBCO compound in existence.

Chemical analysis on their samples have shown only trace levels of Zr,La,Sm,Al and Mg,

with the overall purity of the crystals being limited by the starting materials themselves,

typically 99.995 %. This dramatically improved quality has resulted in narrow supercon-

ducting transitions, smaller magnetization hysteresis and incredibly sharp x-ray rocking

curves compared to previous generations of YBCO samples [116]. The crystals provided

by this group are widely considered to be the best in the world.

YBa2Cu3O6.33−6.35

The preparation of homogenous YBCO samples with carrier doping near the AFM-SC

boundary is a difficult task due to the extreme sensitivity of the materials to annealing

conditions and the coexistence of multiple phases in that region of the phase diagram.

Recently, Liang et.al. [126] have succeeded in producing samples that have sharp super-

conducting transitions, and exhibit no signs of the tetragonal or ortho-III∗ phase. We

were provided with 6 of these crystals, prepared with y in the range of 6.33-6.35, very

close to the onset of superconductivity. The actual Oxygen content of the samples varied

slightly from batch to batch and is reflected in their Tcs. In this region of the phase

diagram a change in the Oxygen content by 0.001 results in a change of Tc by 0.8 K.

The samples were grown by a self-flux method in BaZrO3 crucibles and the oxygen was

set to y ∼ 6.35 by annealing at 900-930 ◦C for one week in flowing Oxygen. Annealing took

place in a small quartz ampoule which contained an appropriately doped ceramic pellet

of YBCOy, and the samples were rapidly quenched to room temperature after words.

Further annealing at 500 ◦C was required to eliminate the Oxygen inhomogeneity, which

was followed with a quench into ice water. Samples prepared in this manner are initially

disordered, and had either very low Tcs or were non-superconducting altogether. Further

annealing at room temperature or above sees the Tc rise with time, as described in section
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5.4.2. We obtained 3 samples of YBCO6.35 (B,H,F)1 which were designed to have a final

Tc in the 10 K range, and 3 samples of YBCO6.33 (J,K,L) which were designed to have a

final Tc of approximately 5 K. All of these samples were quenched to 0◦ C immediately

after annealing then shipped to Toronto or Sherbrooke on dry ice to preserve Oxygen

disorder.

Oxygen ordered ortho-II YBa2Cu3O6.50

In total we obtained 3 high quality, detwinned single crystals of YBa3Cu3O6.50 from the

group at UBC [145] (samples A,B,C). The samples were grown in BaZrO3 crucibles, then

detwinned at 300◦C by applying 100 atm of uniaxial pressure along the a-direction. To

set the Oxygen content to y=6.50 the samples were sealed in a quartz ampoule with large,

previously prepared ceramic YBCO6.5 pellets. The crystals and pellet were then annealed

at 390 ◦C for 2 weeks. Ortho-II order was maximized by low temperature annealing at

84 ◦C for 2 days followed by 60 ◦C for 5 days. Crystals prepared in this manner were

found to posses sharp superconducting transitions, and three dimensional ordering with

very long correlations lengths, on the order of hundreds of Å [145].

Oxygen ordered ortho-I YBa2Cu3O6.99

A single sample of BaZrO3 grown overdoped YBCO was also obtained from the UBC

group. As in the previous batches the starting material was of the highest commercially

available purity [116]- 99.999% (Y2O3) 99.995% (CuO) and 99.997 % (BaCO3). The

compounds were mixed in powder form, then placed in the crucible, which was heated

to 1020 ◦C, held there for 15 hours then slowly cooled to 960 ◦C over the period of a few

days. The Oxygen content was set by annealing in ultra-pure Oxygen and the sample

was detwinned using the procedure mentioned above.

6.2.2 YSZ grown YBCO samples with y = 6.6 - 6.95

Underdoped YBCO crystals were prepared in our own labs under the guidance of Harry

Zhang. Optimally doped YSZ grown samples were placed in a quartz tube that had been

cleaned in a weak HCl solution. The samples were set atop a few cc’s of YBCO powder,

previously prepared to have an Oxygen concentration in the range that we desired. Fol-

lowing the temperature-pressure phase diagram reported by Schleger et.al. [146] we set

1A brief note on sample nomenclature: The samples were assigned names based on when they arrived -
A first, B second etc. Samples which are not discussed in this thesis were either damaged, broken, or
did not posses electrical and thermal contacts of sufficient quality for low temperature measurements
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the Oxygen partial pressure within the tube to be between 100 mTorr and 450 mTorr

after pumping and flushing the tube repeatedly with high purity dry Oxygen. The sam-

ples were then allowed to anneal for 7-10 days at 450 ◦C, followed by a quench into liquid

nitrogen. This procedure yielded crystals with sharp superconducting transitions as seen

in susceptibility measurements, but several had “double-step” resistive transitions indi-

cating some surface Oxygen inhomogeneity. Lower partial pressures of Oxygen seemed

to result in sharper transitions. Sample O and K were prepared with a partial pressure of

350 mTorr Oxygen and samples Q and S with 100 mTorr. The later pair did not posses

the “double-step” transition which plagued the first set.

6.2.3 Preparation of YBa2Cu4O8

The growth of the YBa2Cu4O8 cuprate can only be achieved under extremely high pres-

sures, making these crystals quite rare. We were fortunate enough to receive four of such

samples (A,B,C,D) from Nigel Hussey at the University of Bristol for transport measure-

ments. The samples were grown by a flux method in Y2O3 crucibles in an Ar/O2 mixture

at 2000 bar [147] at the Superconducting Research Laboratory in Tokyo. The samples

were exceeding small platelets requiring the utmost care in handling. Two were aligned

along with the long dimension along the a-axis and two along the b-axis.

6.3 Physical dimensions of YBCO samples used in the study

The determination of the physical dimensions of each of our crystals was done with

great care, as uncertainty in the size of the sample is the chief source of error in our

absolute determination of κ. This was accomplished either by using a calibrated light

microscope or, when samples were smaller, a scanning electron microscope (SEM). The

greatest contribution to geometric factor error is typically found in measuring the contact

separation between the voltage wires, which is sometimes complicated if large amounts

of silver paint are used to bond the wire to the sample. The typical resistance of a silver

wired bonded to a bare YBCO surface with silver paint was however measured to be on

the order of 1 MΩ, so we take the true contact separation to be the distance between

the low resistance diffused pads and not the actual wires themselves. For especially large

contacts, there exists the possibility that the contact separation for electrical current

(determined via the pad separation) is different than the contact separation for thermal

current. This is due to the fact that the latter is determined in part by the path of least

resistance for the phonons, which is in some way related the size of the patch that the
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Figure 6.1: SEM image of YBCO6.33 sample J, showing a measurement of the thickness. The
image was taken at the university of Sherbrooke by Ronan Larger and Shiyan Li.

silver paint makes on the face of the crystal. For the most part we ignore this effect,

which is small in samples with well defined contacts. Figure 6.1 shows an SEM image of

one of our samples, demonstrating how the thickness is determined.

The measured dimensions and geometric factor for all samples studied during this

work are summarized in Appendix 1. The error in the width and the thickness of the

sample is given by the resolution of the measurement apparatus when the samples were

perfect platelets. For unevenly shaped samples the average thickness or width was used,

with the error given by the maximum and minimum variation of these values. The error

in the contact separation was taken to be the width of the diffused pads where possible,

or else the width of the silver paint used to bond the wire to the crystal. The geometric

factor is the calculated as α = thickness × width / length and the error is the geometric

mean of the errors in the three measured dimensions. Only samples that yielded usable

data are included in the table. Those that were omitted were samples that were damaged,

broken or had poor contacts.
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6.4 Preparation of low-resistance contacts

The application of good quality, low resistance contacts to cuprate materials is somewhat

of a black art. The basic idea is to lay down a conductive material in the desired contact

configuration, then bake these pads in order to let the material diffuse through the top

few insulating layers of the crystal and make electrical contact with the conductive layers

beneath. Typically, silver wires are attached to these pads with a small amount of Dupont

4929N silver paint diluted with 1-Acetoxy-2-butoxyethane.

In the process of this study many attempts were made to develop a rigorous and repro-

ducible method for preparing low resistance pads. Our early work focused on preparing

the sample surface and then applying strips of Epoxy Technology H81E silver epoxy that

were baked in an oven at high temperatures. In order to get the best quality contacts

possible, attempts to were made to mechanically abrade the crystal surfaces, or to etch

them with a weak Bromine solution of 0.5 % Br in methanol or a strong acid solution of

20CH3OH:4HCl:1HNO3. Such attempts resulted in marginally improved contact resis-

tance. The principal factors that appeared to most strongly influence the contact quality

were determined to be the annealing environment, and the annealing temperature. For

annealing temperatures less than 400 ◦C with test pieces of YBCO, contacts with resis-

tances of less than 100 Ω were rare even when annealing was performed for several hours.

To obtain low resistance contacts with these low temperatures, annealing times of several

days or weeks were necessary. Contacts annealed at temperatures close to 500 ◦C for one

hour yielded much lower electrical resistances, usually with R < 1 Ω. It should also be

noted that annealing samples in a very clean environment is essential, and a steady flow

of ultra pure Oxygen helps improve contact quality, although this is not practical with

underdoped samples.

A more advanced method was developed with Jennifer DeBenedictis from the Univer-

sity of British Columbia which involved masking off the crystal with Kapton R©film, then

applying a thin coating (∼1000 Å) of evaporated gold. The contacts were then annealed

at around 400 ◦C for long periods of time in a sealed quartz crucible resting on a large

volume of ceramic prepared to the correct Oxygen content. This procedure was found to

result in reproducible contacts with R ∼ 1 Ω, even in highly underdoped YBCO.
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Figure 6.2: The a-axis resistivity for the single crystal YBCO samples near optimal doping.
The inset shows a zoom of the superconducting transition, and we define Tc to be where ρ ∼ 0.

6.5 Sample characterization: determination of Tc.

Measurements of electrical resistivity were the primary tool for establishing the super-

conducting critical temperature of our samples, and were performed using the methods

and apparatus described in chapter 4. In some cases additional measurements of the

AC magnetic susceptibility were taken with a PPMS susceptometer by Patrick Fournier

at the University of Sherbrooke. The characterization data is grouped into sections of

crystals with similar Oxygen concentrations below.

6.5.1 YBa2Cu3Oy, y=6.90-6.99

a-axis resistivity for the single crystal YBCO samples with y near optimum doping is

shown in figure 6.2. The samples with y=6.95 have a room temperature resistivity of

300 ± 30 µΩ cm, which agrees favourably with typical values reported previously in

the literature [148]. We define the resistive Tc as the temperature where ρ=0, with the

transition width being determined as the temperature difference between the onset of the

resistive downturn and where ρ=0. For the samples A and D, grown at the university

of Toronto, Tc = 92.8 K and 93.2 K respectively, with ∆Tc = 0.5 K for each. For the

McGill grown sample, Tc = 93.5 K with ∆Tc also 0.5 K. The overdoped sample, grown in
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Figure 6.3: Resistivity for the 4 four underdoped YBCO samples prepared at the university of
Toronto with the assistance of Harry Zhang. The Oxygen concentrations were determined by
comparing their Tcs and room temperature resistivity as outlined in the text.

a BZO crucible, had a Tc of 90.4 K, with a transition of width 3 K. Finally, the slightly

underdoped sample had a Tc of 81 K with a 2 K transition width. We estimate the

Oxygen concentration of this sample to be y = 6.9, based on comparing the value of

ρ300K and Tc with that found for samples with directly measured Oxygen concentrations

in the literature [148] see section 6.7.

6.5.2 YBa2Cu3Oy, y=6.6-6.7

The resistivity of samples prepared by annealing fully doped crystals in partial pressures

of Oxygen (as outlined in section is shown in figure 6.3. We estimate the Oxygen con-

centration y based on the values of room temperature resistivity found in the literature.

The samples with a slightly higher doping level have sharp transitions: Tc where ρ=0 is

61.7 K and 66.4 K for samples S and Q respectively, with transition widths of 3.6 and

1.4 K. The lower doped samples have “double-step” transitions, which likely arise from

doping inhomogeneity at the surface of the crystals. From resistivity the Tcs defined by

the criteria ρ=0 are 40 K and 44 K for samples K and O respectively, although the total

transition width is very large - 17 and 14 K respectively. In order to determine the true
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Figure 6.4: ρa (left axis) and χ
′
AC (right axis) measured on the same sample. The transition

in χ
′
AC is quite narrow, while that in resistivity is broad. Tc can be estimated from the suscep-

tibility data, since it is a probe of the bulk state of the crystal and is not affected by small
impurity phases occurring at the surface of the sample. We note that this is equivalent to the
point where ρ=0.

bulk Tc of the samples measurements of AC-Susceptibility were performed on sample

K, and the result is displayed in figure 6.4. The transition observed by susceptibility

is rather sharp, meaning there is a homogenous Oxygen distribution in the bulk of the

crystal. The Tc observed as the midpoint of χ
′
AC is 41.2 K, which coincides very well

with the temperature at which resistivity goes to zero. Since thermal conductivity is a

bulk measurement we thus ignore the large transition widths arising from the double-step

transition, and retain the ρ =0 criteria for estimating Tc from these crystals.

6.5.3 YBa2Cu3Oy, y=6.5

Of the three samples of ortho-II ordered YBCO6.5 prepared to y=6.5 and in the ortho

II ordered state, only two (B and C) yielded electrical contacts good enough to perform

resistivity measurements, although all three had acceptable thermal contacts for κ mea-

surements. The resistivity for samples B and C, which were prepared with evaporated

gold pads, is shown in figure 6.5 alongside samples with y=6.5 and 6.6 from the litera-

ture [148]. Using the criteria ρ=0 we see that ortho-II B (C) had a Tc of 54.9 K (55.0

K) and each had a transition width of 5 K. The Tc for these samples are considerably
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Figure 6.5: ρa for two of the ortho-II ordered YBCO6.5 samples provided by UBC, compared
to samples of comparable doping from the literature [148]. The magnitudes of the resistivities
seem to be quite different, even allowing for geometric factor errors. This indicates that one of
the samples may have suffered from current inhomogeneity.

higher than that for a y=6.5 sample from Segawa, [148], which had a Tc of 35 K. This

considerable difference likely arises from the long range Oxygen ordering present in our

samples, which enhances hole doping into the planes and thus increases the transition

temperature. Independent magnetization measurements on similar crystals provided by

UBC have yielded Tcs as high as 62 K [145], which coincides with the onset of the super-

conducting transition in our samples.

Judging by the values of the Tc, the expected resistivity curve should appear closer

to that observed by Segawa and Ando for y=6.6, where they measure Tc = 66K. Sample

C is much closer in this respect than sample B, whose resistivity appears anomalously

large. This could be explained by the presence of c-axis contamination in the resistivity

measurement, caused by either poor electrical contacts or intrinsic faults within the

crystal. The fact that sample B is some 3 times thicker than sample C lends weight to that

scenario, since c-axis effects are expected to be more severe in thicker samples. In either

case, the thermal conductivity is not affected by such problems, since thermalization of

the electrons by the phonons (who have negligible anisotropy) ensure an even spatial
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distribution of heat current.

6.5.4 YBa2Cu3Oy, y=6.33-6.35

The low doped samples of YBa2Cu3O6.33 and YBa2Cu3O6.35 yielded resistivity curves

that were dependent on the time spent annealing at room temperature, as a result of the

microscopic process outlined in section 5.4.1. We use the resistivity, or where possible

the magnetic susceptibility, to define and track Tc as a function of annealing (doping).

YBa2Cu3O6.35 Sample B: ρ, χ
′
AC

The 0 field resistivity of YBa2Cu3O6.35 Sample B is shown in figure 6.6 as measured over

the course of a year. The annealing time is taken to be the number of days spent at

room temperature, starting from the time the sample was removed from cold storage.

The most noticeable feature of the curve is the partial transition and plateau like feature

occurring around 50 K. This can be explained by a small concentration of regions of

ortho-II ordering with a large correlation length, a result of imperfect Oxygen homo-

geneity (similar in principle to the YBCO6.6 discussed above). Microscopically, Oxygen

is clustering in areas of the crystal and forming a one chain full, one chain empty ordering

that leaves other regions of the sample Oxygen deficient. These regions have a larger

effective hole concentration, and hence a much higher Tc than the rest of the sample.

Since electrical current will take the path of least resistance in the sample, resistivity is

extremely sensitive to small superconducting impurities, causing the resulting resistivity

measurement to display step like features.

The degree that this inhomogeneity affects thermal conductivity entirely depends on

what percentage of the total sample volume these regions occupy, since measurements of

κ are a bulk probe. We tested this by measuring the bulk AC susceptibility (χ
′
AC) on

this sample to T 60 K, and the results can be seen in the left hand panel of Figure 6.7.

In cooling from 60 K to 20 K, χ
′
AC was observed to decrease by 2×10−7 emu, compared

to a drop of 6×10−5 emu in cooling below the bulk Tc of the sample seen in figure 6.7.

Demagnetization effects can be extreme in thin rectangular platelets, but the width of

the superconducting transition appeared insensitive to an order of magnitude reduction

of the excitation, indicating that the probe field of 0.5 Oe was well below Hc1 even

accounting for geometric effects.

Judging by the large difference in the relative size of the drops in χ
′
AC we estimate

that the overall concentration of ortho-II regions in the sample can be no greater than
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Figure 6.6: Main : ρAB for YBCO6.35 sample B. A distinct double transition is observed,
presumably caused by regions of ortho-II ordered material with a higher Tc. Inset : Zoom on
the data showing where ρ goes to zero.

1% of the total volume. This means they will have no measurable effect on thermal

conductivity measurements, but unfortunately complicate a direct comparison of heat

and charge.

How one correctly defines a representative Tc is for this sample is complicated by the

broad transition, so we turn to susceptibility in an attempt to correlate the features in

resistivity with those in the bulk measurement of χ
′
AC . Figure 6.7 shows the susceptibility

versus temperature of YBa2Cu3O6.35 Sample B after 127 days of annealing, alongside the

resistivity taken at approximately the same time.

What is evident from this figure is that the onset in the drop in susceptibility occurs

at a much lower temperature than the onset of the drop in resistivity, confirming that the

domains that are shorting the resistivity do not comprise a significant volume fraction of

the sample. We note that the temperature where the transition in χ
′
AC is 50 % complete

again corresponds to where the foot of the resistivity curve falls to zero, and we take

these two definitions of Tc to be equivalent. Thus from figure 6.7 we have Tc ∼ 7.0 for
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Figure 6.7: Left,main : AC susceptibility (χ
′
AC) and derivative (χ

′′
AC) of YBCO6.35 sample B.

Left : A small drop is seen in (χ
′
AC) due to the partial superconductivity from ortho-II ordered

domains. We estimate them to account for no more than 1% of the sample by volume. Right :
AC susceptibility and resistivity for the same sample. The midpoint of the transition in χ

′
AC

is seen to coincide with ρ=0, where we define Tc to be.

this anneal2.

YBa2Cu3O6.35 Sample F,H: χ
′
AC

The quality of the electrical contacts on YBa2Cu3O6.35 Sample F became extremely poor

at low temperatures, resulting in a large out of phase component in the measurement of

resistivity. At room T, ρ was observed to be 2700 µΩcm, which is comparable to sample

H. Measurements at lower temperatures were however inconclusive. AC susceptibility

measurements for the sample show Tc to be 6.0 K using the criteria of 50 % drop after

25 days of annealing, which is comparable to the results for sample H , which had Tc

= 4.2 at the same point in time. In the absence of any further data we then take the

two samples to have identical values of Tc at all times. This is further justified given

that the crystals were grown together and had their Oxygen levels set to nominally the

same concentration. Additionally, the fact that their pre-annealing room temperature

resistivities are very close (2700 vs. 2600 µΩcm for samples F and H respectively) is

suggestive of their doping similarity.

The electrical contacts on YBa2Cu3O6.35 sample H were excellent, and good quality

thermal conductivity, electrical resistivity and AC susceptibility data was obtained. The

2We collect the values for all annealing times and all samples in the table at the end of this chapter.
Although there is some error in the determination of Tc due to finite transition width, we take this to
be insignificant for the conclusions that we later draw from the data.
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times annealing at room temperature. A double step transition is evidence of Oxygen ho-
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high temperature resistivity for sample H is shown alongside the low temperature resis-

tivity as a function of annealing time in figure 6.8. It is immediately evident that this

sample possessed the same Oxygen homogeneity problems as sample B, although to a

slightly lesser degree judging by the relative size of the partial transition at 50 K.

The susceptibility of this sample, measured after a total of 25 days annealing at room

temperature, is shown in figure 6.9. At high temperatures a small reduction in signal is

seen near the 50 K transition, although it is at least 20 times smaller than the drop at

low temperatures. Again we conclude this poses no problems for thermal conductivity

measurements. Using the midpoint of the transition in χ
′
AC we define Tc to be 4.2 K at

this time (25 days of annealing), although the transition is quite broad, extending over

± 2 K. The transition temperature during the fridge measurements was established by

resistivity (where ρ=0), since it is not possible to measure susceptibility insituu. These

low temperature resistivity curves are shown in the inset of figure 6.8 for the various

annealing times. The evolution of Tc with annealing is seen to be logarithmic in time in

the right panel of figure 6.9, very similar in behaviour to a YBCO sample with y = 6.41

measured by Veal et.al. [124].
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Figure 6.9: Left : χ
′
AC versus temperature for YBCO6.35 sample H, after 25 days of annealing.

Right : Tc versus annealing time for YBCO6.35 sample H and a sample of YBCO6.41 from the
literature [124]. Both sets of data show a logarithmic evolution of Tc.

YBa2Cu3O6.35 Sample J,K,L: ρ

The task of identifying Tc for samples YBa2Cu3O6.33 J,K and L was made considerably

easier by the fact that no large ortho-II downturns were observed in resistivity3. The

three panels of figure 6.10 show resistivity at low temperatures for these samples for

their various anneal times4. Tc is again taken to be the temperature where ρ = 0 as

before, and each of these samples is seen move from a completely insulating state (no

superconducting downturn to the lowest experimentally accessible temperature of T =

80 mK) to a fully superconducting state after 3 weeks of annealing (Tc = 6 K).

6.5.5 YBa2Cu4O8

Both the a and b axis resistivity of YBa2Cu4O8 has been studied extensively by Hussey

et.al. [138]. We present their data, along with the data for three of our samples in the

left panel of figure 6.11. Calculating the resistivity of our samples using the measured

values of the geometric factor yields curves that are considerably different in magnitude

than those appearing in the literature. Scaling our data by a factor ranging from 1.5-2.1

however shifts our curves to lie precisely on top of those reported by Hussey et.al. This

large scaling factor is outside the margins of error estimated from the calibration of the

SEM, but not completely unexpected due to the exceedingly small size and irregular

3A very small downturn was seen for sample K
4The full resistivity curves are displayed in chapter 11
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Figure 6.10: The low temperature resistivity of YBa2Cu3O6.33 samples J,K and L, for different
anneals. State p1 corresponds to freshly quenched samples (∼ 5 hours annealing). State p2

corresponds to 2 days of annealing, while p3 is after 3 weeks (essentially fully annealed).

shape of the crystals. Given that Hussey et.al. have studied many samples, and cite an

overall error of only 25 % in their measurements [138] of ρa and ρb, we choose to define

our geometric factors by this normalization method. Thus αgeo changes from 2.3 ×10−3,

3.2 ×10−4 and 8.1 ×10−5 cm to 3.4×10−3, 8.2×10−4 and 1.6×10−4 cm for samples A, B

and D respectively. From the shapes of the temperature dependence of the resistivity it

is clear that samples A and B are oriented along the a-axis while D is a b-axis oriented

sample.

The resistive Tc for our samples, which is unaffected by issues of geometric factor

uncertainty, is observed to be 78 ± 1 K for all 3 crystals, essentially the same as that

quoted in the literature [137, 138]. The large anisotropy between a and b axis trans-

port is the result of the crystal structure - the double-full chains provide an additional

channel of conduction over the planes alone. This anisotropy is significantly larger than

in the YBa2Cu3Oy compound, ρA/ρB = 3 for YBa2Cu4O8 versus 2.2 for YBa2Cu3O6.95

[120, 149]. The change in slope of ρa at around 180 K has been proposed to correlate

with the suppression of spin scattering [141] that occurs at the pseudogap temperature

(T ∗), although recent work [138] has suggested that the this suppression of the in-plane

scattering rate occurs over a much wider temperature range above T ∗.
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Figure 6.11: Resistivity for YBa2Cu4O8 samples A,B and D. The left hand figure shows the
raw data using the measured values of geometric factors listed in appendix 1, alongside data
on a and b-axis aligned samples from the literature [138]. The right hand figure shows the data
for samples A,B and D scaled by a factor to match the data of Hussey et.al.

6.6 Doping dependence of ρ: trends, analysis and compari-

son to the literature.

In figure 6.12 the resistivity of a selection of our samples spanning a large portion of the

superconducting region of the phase diagram is shown alongside resistivity on similar

samples found in the literature [150]. In this study, Ando et.al. carefully controlled the

Oxygen content in a series of detwinned samples, using iodometry [151] to measure y. For

low doped samples, their approach is to quench the samples directly after growth [148]

and ignore the physics of the long range ordered state. This is evident in the resistivity

curves for our highly ordered ortho-II phase YBCO6.5, compared to their disordered

samples. The Tc measured by Ando et.al. is some 15 K lower than ours, and the room

temperature resistivity is almost twice as large.

The overall phenomenology of our resistivity versus doping data seems to follow that

of the literature results: the magnitude of the resistivity decreases with increasing dop-

ing, as one would expect for an increased carrier concentration. It is near linear with T

at y=6.95, and crosses over to an s-shaped curve for moderately underdoped materials

before possessing an upturn at low T for the y = 6.35 sample. Attempts have been made

to assign a “characteristic temperature” or T ∗ to the point at which the resistivity devi-
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ates from linearity in the underdoped regime, believed to be associated with the opening

of the pseudogap [152, 153]. This quantitative analysis is however rather subjective for

two primary reasons. First, paraconductivity arising from superconducting fluctuations

well above Tc may result in a negative curvature [150, 154] and second, data to high tem-

peratures is often not available to determine whether a true inflection point is present, or

merely an extended roll-off [138]. Recently, work by Ando and others [150] has focused on

using the second derivative of ρab in YBCO, LSCO and Bi2Sr2−xLaxCuO6+δ (BSLCO) as

a criteria for determining the correct value of T ∗, and found a generic doping dependence

that suggests that the pseudogap closes near optimal doping.

The role that the pseudogap plays in influencing the shape of the resistivity curves

in the underdoped regime is still the subject of some debate. The underlying physics

almost certainly lies in the partial destruction of the Fermi surface below T ∗ as observed

by ARPES [155], but precisely how this determines the temperature dependence of ρab

is not yet fully understood. The s-shaped curvature of the data has been proposed by

some authors to be the result of a rapid suppression of the inelastic scattering rate of

the electrons upon entering the pseudogap phase [152]. Others have linked the feature

to thermally induced (π, 0) quasiparticles which play an increasingly important role in

transport at high temperatures [156].

At very low dopings, the upturn at low T has been interpreted as a signature of an

insulating ground state [157]. In our own data on very pure YBCO at low dopings, the

magnitude of the upturn is however greatly reduced, and we discuss this data in detail

in chapter 11.

6.6.1 Determination of y from ρ

For our YSZ grown samples with y in the range 6.55-6.85 we use curves from the literature

to estimate the Oxygen content. Since long range Oxygen order was not present in

samples in this doping range we expect our resistivity curves to match those reported by

Ando [148, 150]. Using literature values of ρ300K and Tc versus y we establish the Oxygen

concentration for underdoped, detwinned samples K,O,S and T as shown in figure 6.13.

In the left panel, we choose a value of y which matches the observed Tc onto the trend

from the literature. This yields y = 6.52, 6.54, 6.75, 6.85 for samples K,O,S and T

respectively. In the right panel, we fit the values of ρ300K versus y and find reasonable

agreement to the form of ρ300K = -380 + 466×(y−6.208)−1. Adjusting y for our crystals

to match the resistivity onto this empirical fit, we get y = 6.59, 6.60, 6.85 and 6.83 for
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Figure 6.12: Left :The resistivity versus temperature for a selection of YBCO samples discussed
which span the doping phase diagram. The current is along the a-axis in all cases, except for
the YBCO6.35 sample, where it was in the plane, and contained contributions from ρa and ρb.
Right : Resistivity curves selected from the literature for comparison.

K,O,S and T. Both methods yield very similar values of y, and we take the average of

the two fits to set the Oxygen concentration. We thus take the final values of y to be

6.55 ± 0.03, 6.57 ± 0.03, 6.79 ± 0.04 and 6.85 ± 0.02 for K,O,S and T respectively. This

exercise is mainly for nomenclature purposes, as the hole concentration p was estimated

independently of y, as discussed in the next section.

6.7 Determination of hole concentration

The determination of the planar hole concentration in the YBCO family is challenging for

a number of reasons. First, unlike the LSCO family where cation substitution of Sr2+ for

La3+ directly introduces 1 hole per Sr atom, there is no analogous correlation between

Oxygen concentration and p. Secondly, as has been demonstrated conclusively in the

preceding chapter, the co-ordination of the Oxygen plays a role in determining the hole

concentration. Two structures with identical y can have different p and consequently Tc.

We take the view that rather than determine p from y, we should instead try to infer p

from Tc, which is an easy experimental quantity to access.

A systematic study of the evolution of Tc with hole concentration was performed by

Presland et.al. [158] in the Tlm(Ba,Sr)2Can−1CunO2n+m+2+δ compounds, where n=1,2,3

m= 1,2 and δ is the adjustable Oxygen concentration. Using their results, and the earlier

studies [159, 160] of Tc vs. p in the LSCO system Presland et.al. proposed the well-known
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Figure 6.13: Left:The superconducting transition temperatures versus iodiometric Oxygen
concentration as determined by metric titration in the literature [150]. For samples where
we do not know the Oxygen concentration directly, we assign a value of y that scales the Tc

onto the curve. Right: a-axis resistivity at 300 K versus y reported by Ando et.al. [150]. We
scale the values for our unknown samples onto the curve by choosing an Oxygen concentration
to match the fit.

relation:

Tc/Tc(max) = 1− 82.6(p− 0.16)2 (6.1)

We note that this is in essence an empirical result, but one that is widely accepted

within the community.

Using equation 6.1 we now estimate the planar hole concentration for each of our

samples. For the YBa2Cu3Oy system we take Tmax
c to be 93.5 K. For the YBa2Cu4O8

system we take Tmax
c to be the same, with the understanding that the system exists at

only one doping, which is naturally underdoped. Tables 6.1 and 6.2 summarize the values

of Tc inferred from ρ and χ in the sections above, as well as the calculated p. For samples

that were annealed at room temperature, the p value is given at each anneal. The doping

for the initial annealed state of YBCO6.33 J,K and L, which were non-superconducting

was estimated by extrapolating backwards on a logarithmic plot of hole doping versus

time, since p is known to evolve in a logarithmic manner. This procedure estimates

p=0.048 for each sample, although the error bars due to the extrapolation process are

likely on the order of ± 0.005.
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Table 6.1: Tc and p values for YBCO samples in the doping range y = 6.50 - 6.99.
Tc was determined by ρ and χ

′
AC , and p was estimated from 6.1.

Sample Tcρ=0 (K) p - holes/Cu

YBCO6.99 UBC 90.4 0.178

YBCO6.95 A 92.8 0.151

YBCO6.95 D 93.2 0.154

YBCO6.95 McGill 93.5 0.16

YBCO6.85 T 81 0.120

YBCO6.55 K 40 0.077

YBCO6.57 O 44 0.080

YBCO6.79 S 62 0.096

YBCO6.7 Q 66 0.101

YBCO6.50 B 55 0.089

YBCO6.50 C 55 0.089

YBCO6.0 (A,C,D,E) - 0

YBa2Cu4O8 (all samples) 78 0.115

6.8 Chapter summary

Using measurements of resistivity and susceptibility, we have established the supercon-

ducting transition temperatures for each of our samples of YBCO. We use the criteria

ρ=0 to establish Tc, and in samples with broad resistive transitions we confirm this by

measuring χ
′
AC , which is insensitive to surface superconductivity. Using the empirical

relation of Presland et.al. [158] we estimate the planar hole concentration as summarized

in tables 6.1 and 6.2. From these tables, it is apparent that the many samples we have

grown or acquired from collaborators cover a wide swath of the cuprate phase diagram -

from slightly overdoped superconductor to Mott insulator.
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Table 6.2: Tc and p values for highly underdoped YBCO samples with y = 6.33-6.35.
Tc was determined by ρ and χ

′
AC , and p was estimated from 6.1. The anneal time is

counted from when the samples were first warmed to room temperature after storage
on dry ice.

Sample Tcρ=0 (K) p - holes/Cu Anneal time (days)

YBCO6.35 B 4 0.0523 10

YBCO6.35 B 11 0.0566 350

YBCO6.35 H 0.5 0.0502 0.13

YBCO6.35 H 0.8 0.0504 0.25

YBCO6.35 H 0.9 0.0505 0.46

YBCO6.35 H 1.4 0.0508 1.5

YBCO6.33 J - 0.048 0.17

YBCO6.33 J 0.1 0.0503 2

YBCO6.33 J 5.5 0.0533 29

YBCO6.33 K - 0.048 0.21

YBCO6.33 K - 0.0500 2

YBCO6.33 K 5 0.0529 29

YBCO6.33 L - 0.048 0.25

YBCO6.33 L 0.1 0.0500 2

YBCO6.33 L 6.0 0.0536 29



7

Thermal conductivity of YBCO, T > 1K

7.1 Chapter overview

To further characterize our samples we performed a series of high temperature thermal

conductivity measurements using the techniques and instrumentation described in chap-

ter 4. In this chapter I present these results, and discuss the conclusions that one may

draw from the data. This is the first time such a study has been reported on a series

of high quality, detwinned YBCO single crystals as a function of doping. In particular I

show how high temperature κ measurements provide us with an independent bulk mea-

surement of Tc, and allow us to estimate the relative impurity scattering rate between

samples of similar dopings. The level of intrinsic disorder in optimally doped samples of

YBCO from different crystal growers is established and compared to other members of

the high-Tc cuprate family. We confirm that YBCO samples grown in BaZrO3 crucibles

are of superior purity than those grown using other methods.

7.2 Measurements of κ at T > 1K in YBa2Cu3Oy

The high temperature (T > 1 K) thermal conductivity of our crystals was measured in

the 4He dip probe described in section 4.2.1. The data for a selection of mostly detwinned

single crystals at various dopings is shown as a function of temperature in figure 7.1. The

samples were oriented such that J ‖ a1, in order to eliminate the contributions from the

oxygen chains. For moderately underdoped (y = 6.5) to overdoped (y = 6.99) samples

the distinguishing feature of the curves is the large peak centered between 20 and 40 K,

which crosses over to a T independent plateau at higher temperatures. The peak position

is seen to be sensitive to doping, and falls to lower temperature as carrier concentration

is reduced. The peak height also decreases as doping is lowered, although samples that

1Samples with y=6.33,6.35 are near the orthorhombic-tetragonal transition and are twinned, so J ‖ ab

77
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Figure 7.1: The high temperature thermal conductivity for samples of YBa2Cu3Oy of various
dopings. The current was along the a-axis for all samples except y=6.35 and 6.0, in which
current flowed in the ab-plane.

are quite close in y often display significantly different values of κpeak. For very low

doped (y = 6.35) to undoped (y = 6.0) the peak vanishes, and the thermal conductivity

monotonically increases from low T to a plateau at higher temperatures.

As discussed in chapter 2 the two dominant heat transport mechanisms in metals

are phonons and electrons. We can use the Wieddeman-Franz law introduced in section

2.3 to obtain a rough estimate as to the magnitude of κel and κph in YBCO. Since the

Sommerfeld value of the Lorenz number is only realized at very high and very low tem-

peratures, we use the resistivity at 300 K from figure 6.12 and the thermal conductivity

of the samples in the plateau region (T > 100 K) of figure 7.12. Taking the optimally

doped sample with y= 6.95 as an example, we see that κ300K = 10 W/Km and ρ300K =

270 µΩ. Using the WF law with L0 = 2.45 ×10−8 W/Km, the electrical resistivity yields

a thermal conductivity of 2.8 W/Km, or 30 % of the total conductivity at 300K.

This rough calculation illustrates the difficulty in distinguishing between the elec-

tronic and phononic carriers over a wide range of temperatures, when inelastic scattering

2Previous studies to higher temperatures have indeed shown that the thermal conductivity remains
more or less constant for T > 100K [161]
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processes cause the Lorenz number to vary with T . It is for this reason that the ori-

gin of the peak in the thermal conductivity has been the subject of some controversy.

Some authors [162, 163, 164] have proposed that its origin lies in an enhancement in the

phononic mean free path when Cooper pair formation reduces electron-phonon scattering.

Others have proposed[165] that the peak is in fact electronic in origin, arising from an

enhanced quasiparticle lifetime due to reduced quasiparticle-quasiparticle scattering in

the superconducting state.

In recent years considerable evidence has amassed to support the latter scenario, which

we take to be correct. A key piece of evidence is the observation of the collapse of the

quasiparticle relaxation rate just below Tc, as observed through microwave measurements

[166]. The field dependence of κ in YBCO single crystals also allows a separation of

the phononic contribution, and the resulting electronic contribution has a strong peak

at intermediate temperatures [167]. In contrast, the temperature dependence of κph is

found to be featureless in the vicinity of Tc. The most convincing evidence to support

the quasiparticle peak scenario is found in thermal Hall measurements, where the Hall

thermal conductivity κxy is measured in a magnetic field. Zhang et.al. [168] observed

a 1000 fold increase in κxy/B between Tc and 30 K in a YBCO7.0 sample, which must

be a direct result of rapidly increasing quasiparticle lifetimes below the superconducting

transition since the phonon conductivity is not affected by field.

Drawing from these measurements, the interpretation of the T dependence of the

thermal conductivity is as follows. At high T , the temperature dependence is roughly

flat, and comprised of phonon and electron contributions of comparable magnitude. As

one cools to near Tc, a slight rise is seen in some samples, which has been attributed

as a T−1 contribution arising from a phonon-phonon Umklapp process [169]. Below Tc

inelastic quasiparticle scattering is drastically reduced as electrons form Cooper pairs

and disappear into the condensate. As the superfluid density increases, the conductivity

of the uncondensed electrons also increases, until elastic scattering associated with crys-

tal impurities and defects becomes dominant. The conductivity of both electronic and

phononic channels decreases at the temperature is lowered further, as thermal activation

of both quasiparticles and phonons is reduced.
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7.3 Evolution with doping: analysis and comparison to the

literature

Although a study of κ versus doping in this temperature regime has not been attempted

on detwinned samples, we may compare our results to available data on twinned crystals

[161, 169, 162]. For the most part the thermal a − b anisotropy is quite small in this

temperature range, and observed to be on the order of 10 % [169]. In the normal state,

for T > Tc the conductivity in our data seems to be the largest for the two near stoichio-

metric samples - YBCO6.99 and the ortho-II ordered YBCO6.50. Since the normal state

conductivity is dominated by phonons, this observation is well described by the model of

Takenaka et.al. [169], who propose that at high temperature κph = (W ph
0 + αT )−1 where

W ph
0 and αT are the phonon thermal resistivities due to phonon defect and phonon-

phonon scattering respectively. In this scenario the y dependence of κph is determined

by oxygen disorder in the chains, which is minimized in the two stoichiometric samples

as originally suggested by Popoviciu and Cohn [161]. This also provides an explanation

of why the normal state thermal conductivity in our detwinned samples is greater than

that of twinned crystals for all dopings [162], since phonon scattering from microscopic

twin boundaries almost certainly contributes to W ph
0 .

In the superconducting state, the position of the peak is seen to shift downwards with

doping. Inyushkin et.al. [162] have reported a similar trend, observing a peak at 27 K

for a sample with y = 0.48. The position of the peak in temperature is expected to vary

strongly with disorder [165], so it is possible that the oxygen chain order plays a role

in influencing this trend. The overall peak height itself is seen to be reduced at lower

dopings in our data, and in the literature for twinned [162, 169] and detwinned[167]

single crystals, as well as polycrystalline samples [161] .

For the insulating y = 6.0 sample the data we observe seems to differ significantly

from that reported in the literature. Takenaka et.al. [169] have reported that in a sample

of YBCO6.06 κ at 100 K is some 3 times greater than that of a sample with y=6.35.

The temperature dependence for the y=6.06 sample is also complex, possessing a double

peak structure that is attributed to either heat conduction by magnons, or an anomalous

phonon damping mechanism due to tilt distortions of the CuO polyhedra [170]. Our y=0

however sample shows a flat, featureless curve with a low conductivity. Further work is

needed to clarify this discrepancy.
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7.4 Determination of Tc from κ

The dramatic increase in the quasiparticle lifetime below Tc is reflected by a sharp kink

in the thermal conductivity at Tc, which we use as a bulk measurement of the transi-

tion temperature in samples where it is evident. As doping is decreased, and the overall

quasiparticle contribution to the heat current is reduced, this kink is less and less pro-

nounced. At the same time superconducting fluctuations may have a rounding effect

near Tc [171, 172] which is likely more pronounced in the underdoped regime where the

phase stiffness is lowered. Figure 7.4 shows a close up of the transition region for selected

samples in the doping range y=6.5 - 6.99. We determine the Tc from these plots by draw-

ing straight line fits to the data above and below the kink, and taking the intersection

of these lines as the transition temperature. The error in this value is determined by

the point at which the straight line fit departs from the data, as indicated in the figure.

The zero field Tc determined from κ for several dopings is listed alongside the values

determined from resistivity3 in table 7.1.

Table 7.1: Superconducting transition temperatures estimated from the rise in κ at
Tc, from figure 7.4.

Sample Tc, ρ=0 (K) Tc, κ (K)

YBCO6.99 UBC 90.4 89.2 ± 2

YBCO6.95 A 92.8 94 ± 2

YBCO6.57 O 44 51 ± 4

YBCO6.50 B 55 60 ± 3

This exercise serves as a check of the quality and homogeneity of our samples, since

the Tc determined in this manner is a bulk property of the sample. From this data it

can be seen that for the most part the transition temperatures determined via the two

methods agree fairly well. The lower doped samples each give Tc’s slightly higher than

those measured by ρ, but the transitions are somewhat smeared in the κ data and thus

have larger errors associated with them.

3Define previous sections as where ρ=0.
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Figure 7.2: The kink observed in high temperature thermal conductivity data near the super-
conducting transition. We use this feature to identify a bulk Tc by fitting straight lines to the
data above and below the kink and defining Tc by their intersection.

7.5 Purity dependence: YSZ vs. BaZrO3 grown samples

The dramatic difference in the superconducting state peak height between the YSZ grown

YBCO6.95 and the BaZrO3 grown YBCO6.99 cannot be accounted for by the small change

in doping level. For optimally doped YSZ grown crystals, several measurements of the

peak height and normal state plateau values of κa have been made [167, 169, 162] and our

values compare quite well. The average literature value for the peak is around 22 W/mK

with a peak-to-plateau ratio of approximately 2. In all cases the thermal conductivity

of our samples is much greater than pressed polycrystalline samples [161], as expected

since scattering from grain boundaries may significantly degrade a heat current.

Measurements of κa on BaZrO3 grown samples of YBCO6.99 have previously been

reported [168], and the data is quantitatively consistent with ours. Our peak height is

slightly larger than 40 W/mK and the peak-to-plateau ratio is roughly 3 in both sets

of data. The clear trend from both the literature and our own measurements is that

the higher quality BaZrO3 grown samples have much larger peaks, suggesting a close

relationship between peak height and sample purity.
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Figure 7.3: Left : Thermal conductivity at high temperatures shown for several optimally
doped cuprates. The data is plotted versus T/Tc to facilitate comparison with the theory of
Hirschfeld and Puttika [165]. Right : The ratio of the peak height to plateau value above Tc is
a direct consequence of the impurity scattering rate within a crystal, allowing one to estimate
the relative amount of impurities. From the theory of Hirschfeld and Puttika[165].

This observation is well described by the theory of Hirschfeld and Puttika [165], who

have studied in detail the dependence of the peak in κ on the elastic scattering rate Γ.

Assuming unitary scattering, the normal state scattering rate is given by Γ = nin/πN0

where n is the electron density, N0 is the density of states at the Fermi level, and ni is

the impurity concentration. The authors evaluate the thermal conductivity of a d-wave

superconductor, assuming unitary elastic scattering by impurities and inelastic scattering

by spin fluctuations. The calculated electronic contribution to thermal conductivity

normalized by the value of κ at Tc is plotted as a function of T/Tc in the right side of

figure 7.3. The authors predict a monotonic dependence of peak height and position

as Γ is varied. The peak position itself is pushed to higher temperatures for large Γ,

resulting from the fact that the rapid growth in quasiparticle mean free path is cut off at

higher and higher energy scales. The peak height is also seen to be strongly dependent

on scattering rate, with the rough relation that a factor of ten increase in Γ results in

a factor of 2 decrease in peak height. These results were verified in data supplied by

Taillefer et.al. on a set of YBCO crystals [165] with controlled Zinc impurity levels. Data

for a sample with 3% Zn impurities (determined from Tc suppression) is shown in figure
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7.3, alongside our optimally doped YSZ and BaZrO3 grown YBCO. Data from optimally

doped LSCO measured in our lab [62], and Bi2Sr2CaCu2O8 from the literature [173] is

also plotted.

In the 3 % Zn-doped YBCO sample the addition of this level of impurities causes

the peak to nearly vanish. The corresponding residual resistivity extrapolated from the

linear temperature dependence of ρa(T ) goes from being negative in the nominally pure

crystal to ρ0 = 30 µΩ cm in the Zn-doped crystal. In the optimally-doped LSCO sample,

ρ0 is estimated to be 33 µΩ cm [62], and the peak is suppressed even further. This is

true despite the high chemical purity of the crystal, and is likely a result of the Sr atoms

acting as scattering centres.

By comparing to the peak heights to the curves of Hirschfeld and Puttika, we then

estimate that the relative scattering rates between the crystals are 1:10:100 for the

BaZrO3 grown YBCO, the YSZ grown YBCO and the BSCCO and LSCO respectively.

In other words, the highest purity YBCO has a relative level of disorder some 100 times

smaller than in LSCO and BSCCO. In YBCO this estimate is directly supported by

microwave spectroscopy measurements of thermally-excited quasiparticles in the elastic

scattering limit. These experiments reveal that the scattering rate in the superconducting

state is some 12 times greater for optimally-doped YBCO grown in YSZ crucibles [174]

compared to the slightly overdoped y = 6.99 samples grown in BZO crucibles [117].

7.6 High temperature thermal conductivity of YBa2Cu4O8

Several attempts to measure the thermal conductivity of the YBa2Cu4O8 samples to high

temperature were made, however due to their small size and large thermal resistances we

were unfortunately not able at the time of writing to obtain definitive results on these

crystals.

Data on samples similar to ours is available in the literature however, and from this

we are able to compare this compound with YBa2Cu3Oy. Figure 7.4 shows the high T

a-axis κ data from Kohn and Karpinski [175] compared to samples of optimally doped

YBa2Cu3Oy measured in our own lab. The dramatically enhanced peak is the highest yet

observed for the cuprates, some 3 times larger than that in the most pure YBa2Cu3Oy.

This is certainly a result of the extremely low levels of oxygen chain disorder present in the

stoichiometric Y-124 compound. Using the theory of Hirschfeld and Puttika discussed

above, we estimate that these compounds have an impurity scattering rate some 10
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Figure 7.4: Thermal conductivity at high temperatures along the a-axis for YBa2Cu4O8 samples
from the literature [175] alongside YBa2Cu3Oy samples measured in our own laboratory. The
dramatic difference in peak height is likely due to the absence of oxygen chain disorder in the
YBa2Cu4O8 system.

times and 100 times lower than the BaZrO3 and YSZ grown samples of YBa2Cu3Oy,

respectively. These are the lowest-disorder cuprates yet produced, by a wide margin.

7.7 Chapter summary

Measurements of thermal conductivity at temperatures greater than 1 K have yielded

important characterization information on our YBCO crystals. The bulk Tc of a selec-

tion of samples was checked by observing at what temperature the rise in the thermal

conductivity began, and was found to agree with estimates from measurements of ρ. By

noting the ratio of the peak heights to plateau values in κ between various samples and

systems, we were also able to establish an estimate of the relative elastic scattering rates

and thus the intrinsic disorder within.
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The doping dependence of κ0/T in YBa2Cu3Oy

8.1 Chapter overview

In a d-wave superconductor, the presence of nodes in the gap structure leads to quasipar-

ticle excitations down to zero energy in the presence of even small amounts of disorder

[176, 177]. These delocalized excitations carry both charge and heat, and provide a di-

rect measure of the low-energy quasiparticle spectrum [59]. In this chapter, I present

work which uses the well-established and robust connection between low-temperature

heat transport and the energy spectrum of a d-wave superconductor to probe the evo-

lution of low-energy quasiparticles and the superconducting gap as a function of doping

in both YBCO and LSCO. These results appear in reference [1] and in the conference

proceeding of the 2003 M2S conference [6].

8.2 Samples

In addition to the YBCO samples described in detail in chapter 6, we make use of

single crystal samples of La2−xSrxCuO4 for comparison purposes. The LSCO samples

were all grown in an image furnace using the travelling-solvent floating-zone technique

and have Sr dopings of x = 0.06 (samples A and B), 0.07, 0.09, 0.17 and 0.20. In

addition, a non-superconducting LSCO sample with x = 0.05 was also measured. With

the exception of x = 0.06 B, all samples were measured as grown. This may result in

off-stoichiometric oxygen content in the samples. The x = 0.06 B sample was annealed

in flowing argon overnight at 800◦C in an attempt to fix the oxygen content. The argon

annealing, however, had little effect on our results as both x = 0.06 samples gave the

same electronic contribution to the thermal conductivity. A detailed description of the

growth and characterization of this series of crystals is available elsewhere [62].

In LSCO, the hole concentration per Cu in the CuO2 planes, p, is taken to be the

Sr concentration, x. In YBCO, we use the values of p determined in chapter 6 using

86
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the empirical relationship of Presland and Tallon [158], equation 6.1. Although different

criteria may be used for determining the value of the hole doping level in both the LSCO

and YBCO systems, we note that small errors in our estimation of hole concentration do

not noticeably affect the trends observed in our thermal conductivity data.

8.3 Low temperature measurements of κ

8.3.1 YBCO
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Figure 8.1: The thermal conductivity divided by temperature for samples of YBa2Cu3Oy of
various dopings. The x-axis is plotted as Tα, where α is the powerlaw fitting exponent intro-
duced in section 2.6.2, and is scaled such that the range of temperature displayed is 0-300mK.
For the y=6.95 data we plot versus T 2 since the data is limited in range. The thermal current
was along the a-axis for all samples except y=6.35 and, in which current flowed in the ab-plane,
as the sample was twinned.

The low-temperature thermal conductivity of the YBCO samples is shown in the

panels of figure 8.1. For samples where data to T > 600mK is available, we use the

powerlaw extrapolation procedure discussed in section 2.6.2 to determine the value of the

residual linear term, κ0/T . For the optimally doped y=6.95 sample, where data is only

available to 300 mK, we use the older method of extracting the linear term involving an
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extrapolation of κ/T on a T 2 plot to be consistent with previously published data [1]. The

overall trend with doping is immediately evident from figure 8.1: κ0/T decreases steadily

with underdoping, all the way from the slightly overdoped to the highly underdoped

regime. The exponent and temperature coefficient of the powerlaw fits do not appear to

follow any clear trend with doping, although in general the value of α is much lower then

the simple boundary scattering limit of α+1=3. A summary of the values for the YBCO

samples, as well as the LSCO samples discussed in section 8.3.2 are given in Table 8.2.

Finally, we note that a measurement on a fully deoxygenated YBCO sample with y=6.0

correctly yields a zero intercept: κ0/T = 0± 1 µW K−2 cm−1.

8.3.2 LSCO

The low temperature thermal conductivity for the LSCO samples is shown in the two

panels of figure 8.2, and details on the analysis and powerlaw fits can be found elsewhere

[62]. The values for our LSCO agree with those published in a previous study [154], with

the exception of their x = 0.17 sample which has been measured to give a value of κ0/T

which is approximately twice the value we observe. We attribute this difference to the

fact that the crystal studied by Takeya et.al. had a Tc of 40.2 K compared to our Tc of

34.2 K, pointing to a slightly higher hole concentration (likely due to different oxygen

levels within the crystals). The trend with doping of the residual linear term is identical

that for LSCO, although the rate at which κ0/T is suppressed with underdoping is much

faster in LSCO.

8.4 Doping dependence of κo/T

Let us analyse these results within the framework of the standard d-wave BCS theory

discussed in chapter 3. In the dirty limit at low temperature, when kBT ¿ γ ¿ kBTc,

where γ is the impurity bandwidth, the quasiparticle thermal conductivity can be written

in the form of equation 3.14 [59] which relates the residual linear term to values of vF and

v2, the quasiparticle velocities normal and tangential to the Fermi surface at the nodes

respectively. These are the only two parameters that enter the low-energy spectrum,

given by E = ~
√

v2
F k2

1 + v2
2k

2
2, where v2 is a direct measure of the slope of the gap

at the node, as discussed in section 3.4. Figure 8.3 plots the raw values of the linear

term as a function of p for both YBCO and LSCO in the left panel, while the right panel

shows the calculated value of the anisotropy ratio vF /v2 obtained from equation 3.14

using n/d = 5.85 Å and vF ' 2.5× 107 cm/s [29]. Also included is the published value
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Figure 8.2: Thermal conductivity of La2−xSrxCuO4 plotted as κ/T vs T 2, for a) x = 0.09,
0.17 and 0.20, and b) x = 0.05, 0.06 and 0.07. The lines through the data are power law fits,
discussed in the thesis of Dave Hawthorn [62].

for Bi-2212 at optimal doping [89]. All three cuprates have a comparable anisotropy ratio

at optimal doping: vF /v2 = 10, 12 and 19, for LSCO, YBCO, and Bi-2212, respectively.

It has already been noted [89] that the value of 19 for Bi-2212 is in excellent agreement

with the ratio of 20 coming from values of vF = 2.5× 107cm/s and v2 = 1.25× 106cm/s

obtained directly from ARPES [90] 1.

8.5 Nature of the superconducting order parameter

Several authors have proposed the existence of a quantum critical point within the super-

conducting dome in the phase diagram of cuprates, either as a theoretical prediction to

explain the diagram itself or as suggested in various experiments. Its location is usually

taken to be near (or slightly above) optimal doping, in the neighbourhood of p = 0.2. If

1Note the value of 12 for the optimally-doped YBCO crystal differs slightly – albeit within error bars
– from our previously published result of 14, which was an average of several samples. [89]
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Figure 8.3: Left: The doping dependence of κ0/T vs. hole doping per CuO2 plane, p. Right:
Anisotropy ratio vF /v2, calculated from thermal conductivity data via Equation 3.14, vs. p.
The data for Bi-2212 is from Chiao et.al. [89]. Lines are guides to the eye (solid for YBCO,
dashed for LSCO)

it is associated with a change in the symmetry of the superconducting order parameter,

Vojta et.al. have argued that the most likely scenario is a transition from a pure dx2−y2

state to a complex order parameter of the form dx2−y2 + ix, where x can have either s

or dxy symmetry [178]. Sharoni et.al. have recently reported a split zero-bias anomaly

in their tunnelling experiments on Y-123 thin films as soon as the material is doped

beyond optimal doping, a feature which they attribute to the appearance of a complex

component to the order parameter in the bulk [179]. The presence of a subdominant

component ix in the order parameter causes the nodes to be removed, as the gap can no

longer go to zero in any direction. Our observation of a residual linear term in the thermal

conductivity of both YBCO and LSCO, as well as previous results on optimally-doped

Bi-2212 [89] and strongly-overdoped Tl-2201 [58], is a direct consequence of nodes in the

gap. It therefore excludes the possibility of any such subdominant order parameter in the

bulk throughout the doping phase diagram. In other words, if there truly is a quantum

critical point inside the superconducting dome, it does not appear to be associated with

the onset of a complex component in the order parameter.

In view of the ubiquitous nature of the residual linear term in superconducting cuprates,

observed in four different hole-doped materials from strongly-overdoped Tl-2201 to strongly-

underdoped LSCO, two previous results stand out as puzzling anomalies: the absence of
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a detectable linear term in electron-doped Pr2−xCexCuO4 (PCCO) [4] and in hole-doped

YBa2Cu4O8 [5]. In particular, we note that the upper bound of 0.02 mW K−2 cm−1

quoted for κ0/T in YBa2Cu4O8 is 4 to 5 times lower than the value obtained here for

YBa2Cu3Oy at a comparable hole concentration (y = 6.54 or 6.6) - as assessed by the

very similar resistivity curves above Tc
2. This extremely low value is akin to that found

in non-superconducting strongly-underdoped LSCO (x = 0.05).

8.6 Effects of disorder

One of the most remarkable results of transport theory in d-wave superconductors is

the universal nature of heat conduction, which appears due to a cancellation between

the increase in normal fluid density and the decrease in mean free path observed as the

concentration of impurities is increased [59]. This universal behaviour is only found in the

limit where ~Γ ¿ ∆0. In situations where Γ is large, (or ∆0 is small), the behaviour is no

longer universal, and the measured linear term may be closer to the normal state value

κN/T than the universal limit. In the extreme case where ~Γ ∼ ∆0, superconductivity

is destroyed and the normal state value of κN/T is recovered, as in figure 3.4. Therefore

the validity of using Equation 3.14 to extract values of vF /v2 from measurements of the

residual linear term is ensured only when samples are in the universal limit, ~Γ ¿ ∆0.

Universal behaviour in YBCO at optimal doping is already well established, [60] and

inspection of Fig. 8.3 shows that this is confirmed at other dopings. Indeed, we observe

that both BZO and YSZ grown crystals yield values of vF /v2 that lie on the same curve

despite having an order of magnitude difference in purity level3, which is strong evidence

that the universal limit is reached in our YBCO samples. In particular, the YSZ grown

sample with y=0.79 has nominally the same value p as the ortho-II ordered BZO grown

sample, and yields the same value of κ0/T to within error. This is the first confirmation of

the universal nature of thermal transport in the underdoped regime, and demonstrates

unequivocally the versatility of the BCS theory of nodal quasiparticles across a large

region of the phase diagram.

In LSCO, the extremely small values of κ0/T measured in highly underdoped samples

point to a different conclusion. Indeed, for x = 0.06, κ0/T ' 12 µW K−2 cm−1, while the

minimum value for LSCO allowed by equation 3.14 is
k2

B

3~
n
d
(1 + 1) = 18.3 µW K−2 cm−1.

2Our own investigations in this compound have revealed a robust and sizable linear term. These
measurements are presented in chapter 10

3See section 7.5



8: The doping dependence of κ0/T in YBa2Cu3Oy 92

0.04 0.06 0.08 0.10
0.00

0.01

0.02

0.03

0.04

p

κ 0
/T

 (
 m

W
 K

−
2  

cm
−

1 )

LSCO low doping

2/3(kB
2h/2π)(n/d)

Figure 8.4: Measured value of κ0/T for highly underdoped LSCO. The solid line represents
the minimum possible value allowed by Equation 3.14, namely when vF /v2 = 1 5

The data for the LSCO samples with the lowest dopings are plotted in Figure 8.4, which

shows that the use of the formalism developed by Durst and Lee is invalid for these

samples. This breakdown suggests that our underdoped LSCO samples are not in the

limit where ~Γ ¿ ∆0, and hence we cannot extract quantitative information by using

equation 3.14, as we do for YBCO in the following sections. The same conclusion would

apply to previous LSCO data [154].

In order to understand the LSCO data within a d-wave BCS theory of low temperature

heat transport, it will be necessary to incorporate the effects of impurity scattering in

the underdoped regime outside of the universal limit. The effect of impurity scattering

on a d-wave superconductor has been worked out in the standard case of a normal state

that is metallic, and conducts heat better than the superconducting state [91]. When

the concentration of impurities is increased in such a case, Tc is gradually suppressed

to zero and the residual linear term rises monotonically to meet its normal state value.

However, our LSCO samples with x ≤ 0.09 exhibit the well-known insulating upturns in

the normal state resistivity associated with the ground state metal-insulator transition

observed near x ∼ 0.16. [157] In fact the resistivity in a strong magnetic field appears to

diverge as T → 0 [7]. Thus, for the LSCO samples where x < 0.16, the effect of increasing

the impurity concentration would be to evolve the system towards an insulating state,

or at least one that conducts heat less well. In this scenario, we expect the measured
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residual linear term κ0/T to be smaller than the universal value, which would explain

how in Figure 8.4 we measure a linear term smaller than that allowed by Equation 3.14

This observation underlines the need for further theoretical work in the area.

8.7 Comparison to the work of Sun et.al.

Very recently 6, additional data on low temperature thermal conductivity in YBCO has

been published in the literature [3]. The work of Sun et.al. finds a different dependence

of the residual linear term on doping than we do, however it appears that this difference

arises primarily from the way in which the data is extrapolated to T = 0. Although the

overall trend observed by both groups is the same, it is important to establish the validity

of the absolute value of κ0/T for the analysis that follows in the next few sections.

Figure 8.5 shows the data from Sun et.al. plotted in the left panel as κ/T vs. T 2

alongside our own [1], and in the right panel as κ0/T vs. p. Two important observations

immediately follow from the left panel of the figure. First, the lowest temperature point

in the curves of Sun et.al. is higher than ours - the base temperature is typically 80 mK

where we reach 50 mK. Secondly, in all cases the slope of the phonon term is considerably

larger for their data than ours, which in turn complicates extrapolation to T=0. This is

likely a result of larger sample sizes - the typical dimensions of the crystals of Sun et.al.

are 1.5mm×0.5mm×0.15mm. As was discussed in section 2.6 in the boundary scattering

regime it is the physical dimensions of the sample that determine the phonon thermal

conductivity. Our samples on the other hand are typically less than a millimeter in length

and roughly 1/2 - 1/3 the thickness, consistent with a factor of two or so difference in

the slopes.

Using a naive linear extrapolation on a T 2 plot it is apparent that all of their intercepts

are higher than ours, and the doping dependence of the residual linear differs from our

own. Powerlaw fits of the form κ/T = κ0/T + BT α were performed for all of Sun

et.al.’s data sets, in hopes of reconciling our measurements of the residual linear term.

The error in these extrapolations is slightly higher than is usual for powerlaw fits - Sun

et.al. only present data up to about 300 mK, so the fit range is smaller than ours. Our

powerlaw fits typically extend up to 550 mK, giving lower errors and more confidence in

our extrapolations.

The linear terms that emerge from the powerlaw fits to their data sets are much closer

6The work was published in PRL during the course of writing this manuscript
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Figure 8.5: Left : Thermal conductivity of YBCO samples as function of doping. The data is
plotted in the standard way, κ/T vs. T 2 and includes the recent work of Sun et.al.[3] (filled
symbols) as well as our own [1] (empty symbols). Right : The linear term vs. doping in YBCO.
The solid squares represent the values of κ0/T obtained from the data of Sun et.al. using a linear
extrapolation of κ/T on a T 2 plot, while the open circles represent the values obtained through
a power law fit to the same data. Our own data is shown for comparison (open triangles), and
the dotted lines are guides to the eye. The error bars are determined by the fitting errors for
Sun et.al.’s data, and a combination of fitting error and geometric factor error for our own.

in size to ours. The right panel of figure 8.5 plots the values of the linear terms versus p

from Sun. et.al. obtained both through using a linear extrapolation of κ/T on a T 2 plot,

and using our power law fitting method. We feel that the method of using a floating fit

with 3 free parameters is superior to a forced fit with one free parameter, and thus view

the values obtained from the power law fits as correct, and in agreement with our own

data.

8.8 Doping dependence of the superconducting gap

The remarkable success of the d-wave BCS theory in describing quasiparticle heat trans-

port is highlighted by the observation of universal behaviour in Zn doped YBCO [60]

at optimal doping, and in this work in the underdoped regime by comparing BZO and

YSZ grown samples. We may further interpret our measurements of the anisotropy ratio

vF /v2 in such a theory by using the fact that vF , the Fermi velocity at the node, is es-

sentially independent of doping. This useful fact was shown by ARPES in both Bi-2212

[90] and in LSCO, [29] where the slope of the E vs k dispersion at the Fermi energy
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Figure 8.6: The doping dependence of the Fermi velocity in a host of high-Tc cuprate super-
conductors. Adapted from reference [29]. This insensitivity to doping implies that the doping
dependence of κ0/T directly reveals the doping dependence of v2, the slope of the supercon-
ducting gap at the nodes.

is seen to vary by no more than 10% over the range 0.03 < x < 0.3, with an average

value of vF ' 2.5 × 107 cm/s in both materials. This key result is shown in figure 8.6,

reproduced from reference [29]. The position of the node in k-space is also independent

of doping [90], with kF ' 0.7 Å −1 as measured from (π,π) to the Fermi surface. As a

result, a study of κ0/T vs p yields the doping dependence of v2 = v2(p). Assuming a pure

d-wave order parameter, this then provides the doping dependence of the corresponding

gap maximum, ∆0 via Equation 3.15:

∆0 = ~kF v2/2 (8.1)

In Figure 8.7, we plot the value of ∆0 calculated for our YBCO samples in this manner,

versus hole doping p. The values of ∆0 are also listed in Table 8.2. Again, here we have

confined our analysis to YBCO only, given that LSCO was seen to lie outside the clean

limit. Plotted alongside this data is a conventional BCS d-wave gap (dashed curve), where

we have assumed ∆0 = 2.14kBTc (weak-coupling approximation). The p dependence of

the gap is estimated using Equation 6.1, with a maximum Tc at optimal doping of 93

K. In the overdoped regime, we have also plotted the value of the gap maximum for
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a Tl-2201 compound measured in our laboratory [58] where again we have used Tc to

estimate p.

Let us examine the implications of these results by starting on the overdoped side

of the phase diagram. We use published data in the strongly-overdoped regime on Tl-

2201, [58] a single-plane cuprate with optimal Tc ' 90 K. For an overdoped crystal with

Tc = 15 K, the measured residual linear term is κ0/T = 1.4 mW K−2 cm−1, which yields

vF /v2 = 270 via Equation 3.14. In comparison, the weak-coupling BCS prediction based

on the value of Tc = 15 K is vF /v2 = 210, using the values of vF and kF given above

[58]. The good quantitative agreement shows that in this strongly-overdoped regime

BCS theory works quite well, and the much larger anisotropy ratio is a consequence of

the much smaller Tc. As one moves towards optimal doping, the linear term decreases

significantly, leading to values of Delta that track the weak coupling BSC theory rather

well. This observation adds to the mounting evidence that the physics of the overdoped

region of the phase diagram is conventional - a metallic ground state well-described by

Fermi liquid theory [58, 56] and a superconducting state that is understood within the

context of BCS theory7.

We now turn our attention to the underdoped region of the phase diagram. In the

case of YBCO the decrease in κ0/T by a factor 2 between y = 6.99 and y = 6.50 provides

one of the main results of this chapter: the velocity ratio decreases with underdoping;

it drops from 16 to 8 in going from a sample with Tc = 89 K to an underdoped sample

with Tc = 62 K. This reflects an underlying steepening of the gap at the node while

Tc drops, with underdoping. This is in contradiction with the results of Mesot et.al.

who extracted a slope of the gap from their ARPES measurements on Bi-2212 near

optimal doping that seemed to decrease slightly with underdoping, [90] and with the

analysis of Panagopoulos et.al. who extract a gap maximum from their penetration depth

measurements that remains approximately constant in the underdoped regime [180]. In

this context the value for the highly underdoped y=6.35 sample seems anomalously high,

which will be discussed in greater detail in chapter 12.

Taken by itself, the trend could be attributed either to a gradual departure from weak-

coupling towards strong-coupling BCS superconductivity, with a growing ratio ∆0/Tc. It

7A doping dependent study of the residual linear term from p=0.16 to p=0.26 in Tl2201 has recently
been completed by our group. The findings essentially show that to within reasonable error the value
of ∆0 extracted from thermal conductivity agrees with what would be expected from strong-coupling
BCS theory with µ=4. This work is written up in the thesis of Dave Hawthorn [62] and exists in
preprint form at the time of writing.
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Figure 8.7: Left: Doping dependence of the superconducting gap ∆0 obtained from the
quasiparticle velocity v2 (filled symbols). Here we assume ∆ = ∆0cos2φ, so that ∆0 = ~kF v2/2,
and we plot data for YBCO alongside Bi-2212 [89] and Tl-2201 [58]. The error bars are left off
for clarity, but are set by the geometric factor uncertainty, 10 - 15 %. For comparison, a BCS
gap of the form ∆BCS = 2.14kBTc is also plotted, with Tc taken from Eq. 1 (and Tmax

c = 90 K).
The value of the pseudogap in Bi-2212, as measured ARPES is also shown. Right: ∆0 vs.
p as in the right panel, compared to pseudogap measurements using various complementary
techniques [32]. The thick dashed line in both figures is a guide to the eye.

could also be interpreted as a gradual deformation of the gap shape, from a simple cos2φ

angular dependence to a much steeper function with a decreasing average gap that scales

with Tc. In fact a rounding of the slope of the gap at the nodes was observed [90] in

underdoped BSCCO, however this could have simply been a result of a broadening of the

ARPES spectra due to impurities.

In view of the known behaviour of the pseudogap, these explanations are unlikely to

be the main story. Indeed, the growth of the low-energy gap observed through κ0/T is

highly reminiscent of the similar trend observed in the high energy gap (or pseudogap)

with underdoping.

In fact the growth of ∆0 derived from v2 is in quantitative agreement with the pseudo-

gap maximum determined by ARPES [181, 28, 33, 22]. In the superconducting state,

we use the data of Campuzano et.al. [181] and White et.al. [33] to define the gap as

the energy separating the peak in the ARPES spectral function measured in the (0, π)

direction and the Fermi energy EF , as measured in thin films of BSCCO at 15 K. Above
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Tc, in the normal state, we use the data of Norman et.al. [28], Loeser et.al. [22] and de-

fine the pseudogap as the energy separating the plateau in the ARPES spectral function

measured from EF also in the (0, π) direction. In the right hand side of figure 8.7 we

further compare our data to measurements of the pseudogap compiled by Timusk and

Statt [32] including tunnelling [23, 24] a− b plane optical conductivity [34] and Raman

scattering, [182, 35].

This striking similarity in scaling points to a common origin, which allows us to say

the following things on the nature of the pseudogap. First, due to the very existence

of a residual linear term, the (total) gap seen in thermal conductivity at T → 0 is one

that must have nodes. Any gap larger than a few µeV would serve to lift the nodes off

of the Fermi surface, resulting in a κ0/T of zero. Secondly, the fact that the values of

∆0 we extract from our thermal conductivity measurements agree so well with ARPES

data indicates that the formalism of Durst and Lee applies equally well in the pseudogap

regime as it does the case of overdoped Tl2201. From this we conclude that the pseudogap

itself must have a linear dispersion as in a d-wave gap (i.e. it has a Dirac-like spectrum).

Thirdly, the gap that we see is a true quasiparticle gap and not just a spin gap.

A fundamental question is whether the pseudogap is related to or independent of su-

perconductivity. The first and most natural possibility is that it is due to some form

of precursor pairing. A second possibility is that it may come from a distinct non-

superconducting state. Indeed, a universal thermal conductivity is also possible in a

non-superconducting state as long as the energy spectrum is Dirac-like (i.e. linear dis-

persion). For example, a universal (charge) conductivity was derived for a degenerate

semiconductor in 2D [183]. Interestingly, the d-density-wave (DDW) state proposed as an

explanation for the pseudogap phenomena seen in underdoped cuprates [45] also exhibits

a universal conductivity provided that the chemical potential µ = 0. In the region where

both orders coexist – DDW and d-wave superconductivity (DSC) – Equation 3.14 is then

predicted to hold, [184] with v2 replaced by
√

(vDDW
∆ )2 + (vSC

∆ )2, where vDDW
∆ and vSC

∆

are the gap velocities for the two types of order, respectively. The main unanswered

question then is how does the chemical potential evolve as a function of doping?

In summary, our measurements of κ/T throughout the phase diagram allow us to make

the following statements about the evolution of ∆0 with doping. First, the extrapolated

value of the gap maximum from thermal conductivity in the overdoped regime is in

excellent quantitative agreement with that expected from BCS theory. Secondly, ∆0

continues to grow with underdoping while Tc rises and then falls, in contradiction to
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what one would expect from BCS theory. The divergence of these two energy scales

in the underdoped regime is a manifestation of the pseudogap, whose presence is now

revealed at very low energies in a bulk measurement on crystals of the utmost quality

and purity. The fact that the gap preserves its pure d-wave form (with nodes on the

Fermi surface) throughout suggests that the pseudogap is superconducting in origin.

8.9 Comparison of κ0/T to superfluid density

A direct comparison of our measurements of the residual linear term and measurements

of the superfluid density from the literature provides useful insight into the doping de-

pendence of nodal quasiparticles. The superfluid density can be accessed by studying the

magnetic penetration depth, since ρSe2/m∗ = 1/(µ0λ
2). The temperature dependence

of 1/λ2 is linear in the low temperature regime, a direct consequence of the existence of

thermally excited nodal quasiparticles [18]. The slope of the temperature dependence is

governed by the quasiparticle anisotropy ratio in much the same way as the linear term

in thermal conductivity, as in equation 3.17

Table 8.1: Summary of microwave penetration depth values as a function of doping
in YBCO, from the literature [185, 118, 186].

Sample λ0 (Å) dλ−2

dT
(Å−2K−1) p α2vF /v2

YBCO6.50 2600 -1.25e−9 0.089 4.1

YBCO6.60 2100 (λAB) -1.57e−9 0.093 5.2

YBCO6.95 1600 -1.90e−9 0.16 6.3

YBCO6.99 1600 -1.74e−9 0.169 5.8

The factor α2
FL which enters Equation 3.13 is a Fermi-liquid correction which arises

because of quasiparticle-quasiparticle interactions, which renormalize the electrical cur-

rent. This relationship implies that from the penetration depth measurements we may

directly access information about the term α2
F vF /v2. Using the formalism of Durst and

Lee, we may then obtain an estimate of α2
F by using our independently determined values

of the anisotropy ratio from thermal conductivity.

Microwave penetration depth measurements have been performed on high-quality de-

twinned single crystals of YBCO at a number of dopings by the UBC group [187, 188, 117, 118].

Using a cavity perturbation method, they obtain information about the temperature de-

pendence of the penetration depth, i.e. ∆λ = λ(T )− λ(1K). This data is plotted versus



8: The doping dependence of κ0/T in YBa2Cu3Oy 100

 0  50  100
0.

1.

2.

3.

4.

10−7

0.00 0.05 0.10 0.15 0.20
 0

 5

 10

 15

 20

0.00 0.05 0.10 0.15 0.20
 0

 5

 10

 15

6.50
6.6
6.95
6.99

T

1/
λ2  

[A
−

2 ]

p

v F
/v

2

α2 
v F

/v
2

κ
λ

Figure 8.8: Left : Microwave penetration depth data plotted as 1/λ2 vs. T. The data shows
a flattening of the slope as one underdopes, consistent with a vF /v2 that is reduced. Right :
Quasiparticle velocity ratio in YBCO obtained from universal heat transport, as vF /v2 (circles),
and from superfluid density data, as α2

FL
vF
v2

(triangles). Lines are guides to the eye.

temperature in the left panel of figure 8.8. The absolute value of the penetration depth

at T = 0 must be inferred from other techniques, which is the main source of error in

such a comparison. Until very recently, the most detailed knowledge of λ(0) came from

infrared spectroscopy [185], or µSR [36, 189]. The values of λ(0) from the literature

[185, 118, 186], as well as the slopes of the temperature dependencies of the superfluid

density are summarized in table 8.1.

In the right panel of figure 8.8 we combine the two data sets and plot the value of α2
F

as a function of doping. This yields:

α2
FL ' 0.4− 0.5 , at p ' 0.16 (8.2)

α2
FL ' 0.6− 0.7 , at p ' 0.09 (8.3)

A similar value was previously derived for optimally-doped Bi-2212 [89]. We conclude

that this FL parameter is near unity and, more importantly, is only weakly dependent

on doping in the range studied.

To improve the accuracy of this comparison, estimates of λ0 with greater certainty

than those provided by the infrared and µSR techniques is required. Very recently, a new

method for obtaining this quantity with unprecedented accuracy has emerged. Pereg-

Barnea et.al. have developed a technique [190] which uses ESR on Gd-doped YBCO
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to extract λ0. For an overdoped sample of Y BCO6.99 with a Tc of 89 K they find λ0

= 1030 Å, while for an ortho-II ordered sample of Y BCO6.50 they find λ0 = 2020 Å.

Both values are some 30 % smaller than those reported previously, which will affect

the temperature dependence of ∆λ to some degree. Preliminary estimates [191] of the

temperature dependence of the superfluid density suggest that d/dT1/λ(T )2 = 4.95 ×
1017 (ΩmsK)−1 and 2.16 × 1017 (ΩmsK)−1 for Y BCO6.99 and Y BCO6.50 respectively.

Using these new numbers, we get α2
FL ' 1.3 for p=0.17 and α2

FL ' 1.1 for p =0.1. In

other words, for both dopings the values of α2
FL are essentially unity.

In a recent paper, Ioffe and Millis [192] argue that a doping independent α2
FL, which

they interpret as Ze, the quasiparticle effective charge, severely constrains theories of a

doped Mott insulator. A spin-charge separation scenario for instance leads to a Ze that

vanishes as p → 0. The Brinkman-Rice mean field theory approach to the Mott physics

does in fact predict a doping independent α2
FL, but a vF that decreases with decreased

doping, which is inconsistent with ARPES data. A slave boson treatment of the doped

Mott insulator predicts a Ze that scales linearly with p. Indeed the combination of a

doping independent α2
FL and vF , along with a v2 that increases with decreasing doping

provides a significant challenge to microscopic theories of d-wave superconductivity in

cuprates [192]. It is clear more experimental data, particularly in the extreme underdoped

limit is needed.

8.10 Comparison of thermal and microwave conductivity

One way to shed further light on the nature of the low-energy electron state in underdoped

YBCO is to compare heat transport and charge dynamics. For a d-wave BCS supercon-

ductor, Durst and Lee have shown that the two conductivities are affected differently by

scattering anisotropy and quasiparticle interactions [59]. The charge conductivity in the

ω → 0 and T → 0 limit is given by 3.13:

lim T→0 σ1(T ) = σ0 =
e2

~
1

π2

n

d
βV C α2

FL

vF

v2

, (8.4)

where e is the electron charge. The factor βV C is due to vertex corrections and is greater

than 1.0 when impurity scattering is anisotropic. This simply reflects the fact that intra-

node scattering ( scattering with the initial and final k vector at the same node ) will

degrade a charge current less than inter-node (opposite- or side-node) scattering that

involves a larger change in momentum. This is the discrete version of the (1− cosθ) term
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that enters normal state conductivity and reflects the predominance of back-scattering

over small-angle scattering. Numerical calculations suggest that βV C can be large (e.g. in

excess of 10) in high-purity samples as long as impurity scattering is in the unitary limit

[59]. For Born limit scattering the corrections are independent of impurity concentration,

but still lead to a βV C greater than 1. For heat transport on the other hand, vertex

corrections have been shown by Durst and Lee to have a negligible effect for all scattering

strengths.

The microwave conductivity σ1(ω, T ) of YBCO was recently measured in crystals

nominally identical to ours with y = 6.50 [118] and y = 6.99 [117]. Even though the

measurements go down to 1 GHz and 1.3 K, it turns out to be unclear how to reliably

extrapolate this data to the ω = 0 and T = 0 limit, so that a meaningful comparison of

κ0/T and σ0 is not quite possible at this stage. The shape and temperature dependence

of the microwave spectrum for the y = 6.50 sample for example is suggestive of non-

unitary scattering close to the Born limit, implying that the low-temperature universal

limit regime may not be reached by 1.3 K. Further work is needed to ascertain whether

this is indeed the correct scenario.

8.11 Chapter summary

We have studied the evolution of thermal transport as T → 0 in the cuprate supercon-

ductors YBCO and LSCO over a wide range of the doping phase diagram. The residual

linear term, κ0/T , is observed to be finite throughout the superconducting region. This

proves that the gap always has nodes on the Fermi surface, a fact that has two impli-

cations: 1) it rules out the possibility of a multicomponent order parameter of the type

d + ix in the bulk, appearing at a putative quantum phase transition, and 2) it argues

in favour of a superconducting origin to the pseudogap (e.g. precursor pairing). As the

Mott insulator is approached, κ0/T is observed to decrease, leading to a decreasing value

of the quasiparticle velocity anisotropy ratio, vF /v2. This result offers some of the first

insights into the doping dependence of several important quasiparticle parameters. First,

the slope of the d-wave superconducting gap at the nodes, v2, is seen to increase steadily

as doping is decreased, consistent with a growth of the gap in the underdoped regime.

This is in contradiction to what one naively expects from BCS theory, where the gap

scales with Tc. The gap we extract at very low energies follows closely the pseudogap

measured mostly at much higher energies by other techniques. This close tracking of
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the pseudogap shows that the gap remains roughly of the pure d-wave form through-

out the phase diagram. Secondly, a comparison with superfluid density reveals that the

quasiparticle effective charge is weakly dependent on doping and close to unity.

The considerable difference between the magnitude of the change in κ0/T with under-

doping for the LSCO and YBCO samples provides clues as to the role of disorder in the

underdoped regime. In particular, the small value of the residual linear term of the most

highly underdoped LSCO samples is incompatible with the standard theory of transport

for d-wave superconductors, motivating theoretical work which would incorporate the

effects of impurities in a superconductor whose normal state is insulating rather than

metallic in nature. We summarize the results of this section in Table 8.2.

Table 8.2: Compilation of Tc, doping and residual linear term in the thermal conduc-
tivity as well as values of the quasiparticle anisotropy ratio vF /v2 and gap maximum
∆0 from thermal conductivity measurements. Data for optimally doped Bi-2212 [89]
and overdoped Tl-2201 [58] from previous studies are provided for completeness.

Sample Tc p κ0/T vF /v2 ∆0

[K] [ µW
K2cm

] [ meV ]

YBCO6.0 — 0.0 0±3 — —

YBCO6.35 4 0.054 38±6 3.4 170

YBCO6.50 62 0.10 83±18 7.9 71

YBCO6.6 44 0.08 89±13 8.7 66

YBCO6.8 61 0.096 105±13 8.7 66

YBCO6.95 93.5 0.16 120±24 11.5 50

YBCO6.99 90 0.18 160±12 15.5 37

LSCO 0.05 — 0.05 3±1 — —

LSCO 0.06 A 5.5 0.06 11±2 — —

LSCO 0.06 B 8.5 0.06 12±2 — —

LSCO 0.07 19 0.07 22±2 1.9 —

LSCO 0.09 16 0.09 26±10 2.4 —

LSCO 0.17 34 0.17 96± 7 10.4 —

LSCO 0.20 33.5 0.20 330± 40 36 —

Bi-2212 89 0.16 150± 30 19 30

Tl-2201 15 0.26 1400± 70 270 2
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Thermal Conductivity in the Vortex State of Y Ba2Cu3Oy

9.1 Chapter overview

In a d-wave superconductor, the field dependence of the residual linear term in thermal

conductivity is typically understood in the context of Volovik physics. As summarized

in section 3.4.2, the presence of superfluid vortices serves to Doppler shift the energy

spectrum of nodal quasiparticles, resulting in a
√

H dependence of κ0/T on field. Away

from the universal limit, standard transport theory assumes that quasiparticle scattering

is close to the strong (unitary), and the scattering of quasiparticles from vortices is

neglected. In this chapter I mainly summarize measurements of thermal conductivity

in an ultra pure sample of YBa2Cu3O6.99 in the presence of a magnetic field, although

some data on the in-field conductivity of other samples is presented. Our results force

a re-examination of the basic assumptions of mixed state transport - we find evidence

that the scattering of quasiparticles from vortices is present in our samples, and that

the scattering phase shift is not in the unitary limit. The field dependence of additional

samples in the underdoped regime are also presented, and I examine the implications of

this work on interpreting other data in the literature. The results on the YBa2Cu3O6.99

sample appear in Physical Review Letters [4], while the remainder of the data in this

section is unpublished at present.

9.2 κ(H) in Ultra-pure YBa2Cu3O6.99

For the past 20 years the central assumption underlying theoretical treatments of elec-

tronic transport in unconventional superconductors in that scattering from randomly

distributed impurities should be treated in the unitary limit (π/2 phase shift) [193]. In

thermal transport, the nature of the impurity scattering is manifested in the tempe-

rature and field dependence of the electronic thermal conductivity. At sufficiently low

temperatures, such that T ¿ Γ the universal limit is reached and the ability of qua-

104
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Figure 9.1: Thermal conductivity divided by temperature versus T 2 for a high-purity YBCO
sample for magnetic fields applied perpendicular to the ab plane. The solid line represents the
results of a power law fit to the 0 Tesla data.

siparticles to conduct heat is insensitive to either impurity concentration, or scattering

phase shift [88]. Experimental observation of the universal limit has been confirmed in

the cuprate superconductors YBCO and BSCCO as well as the p-wave superconductor

Sr2RuO4. Thus far we have confined our analysis in the previous chapter to transport

within this limit, but now we look towards testing the assumption of unitary scattering

by the application of a magnetic field and extending analysis of the data to T > 0. This

task is greatly complicated by the necessity of subtracting out any phonon contribution

to the temperature dependence of κ(T, H), however under certain conditions this may

be attempted using a few simple assumptions.

The thermal conductivity of the ultra pure sample of BaZrO3 grown YBa2Cu3O6.99

was measured in both zero and applied magnetic fields using the standard methods

outlined in chapter 4. The heat current was along the a-axis while the field was applied

perpendicular to the a − b plane. To ensure a spatially homogenous vortex lattice, the

sample was field-cooled by cycling to T > 100 K before changing the field. The error

in the absolute value of the conductivity is estimated to be approximately 10%. The

relative error between temperature sweeps at different fields is of order 1%.
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Figure 9.2: Powerlaw fits to the thermal conductivity data for YBa2Cu3O6.99 in 0 and applied
fields. The data is plotted versus T 1.2, which is close to the average value of α for each data
set.

The data is plotted in Figure 9.1 for zero field, a modest field of 0.8 Tesla and at the

maximum experimentally accessible field of 13 Tesla. What is immediately obvious from

this plot is that the majority of the evolution of κ(T ) with field occurs by 0.8 Tesla - the

effect of going to a field 16 times stronger is to simply offset the data by a small amount.

The solid line shows the result of a powerlaw fit to the zero field data. As we have seen

already in Chapter 8, this fit yields a residual linear term which is purely electronic in

origin and has a magnitude of 0.16 mW/cmK2. In Figure 9.2 we plot the raw data and

powerlaw fits for all fields versus T 1.2. The x-scale is chosen to represent the average of

the power law exponents, so the data will appear more or less linear in such a graph. The

value of the zero-field linear term is essentially in agreement with the value for the YSZ

grown optimally doped YBCO, which as argued in chapter 7 is an order of magnitude

less pure than this crystal. This agreement is further evidence for universal behaviour -

in this case we have measured a sample in the more difficult regime of increased purity.

To extract any T -dependence of κe/T , we make use of a magnetic field as follows. We

first assume that the phonon transport at very low temperatures is limited by scattering

from the boundaries of the sample, and is unaffected by scattering from vortices. This
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assumption is justified by noting that the phonon mean free paths at very low tempera-

tures are many orders of magnitude greater than the intervortex spacing. Noting that the

zero-field curve in Figure 9.1 shows a more rapid increase with temperature than the two

in-field curves (which are approximately parallel), we must conclude that this difference

arises entirely from electrons since κph is assumed to be field independent. Furthermore,

since all subsequent in-field curves lie parallel we assume that this additional electronic

conduction is completely suppressed when a magnetic field is applied (see inset of Figure

9.3, and the remaining temperature dependence of κ/T is due entirely to phonons. In

other words κph is the T -dependent part of the 13 T data: κph/T = κ(13 T)/T − κ0(13

T)/T , where κ0(13 T)/T = 0.31 mW/K2cm. The electronic conductivity, κe/T , is then

given by subtracting this from the total conductivity: κe(H, T )/T = κ(H, T )/T −κph/T .

This is shown in Figure 9.3 for applied magnetic fields from 0-13 T.

The zero-field electronic conductivity shows a rapid growth with temperature, in-

creasing by a factor of five within 0.5 K. The temperature dependence of this additional

electronic term is well described by a T 3 fit. The inset of Figure 9.3 shows this nicely -

the electronic conductivity has a finite linear term and a linear slope when plotted on a

T 2 graph. A fit to the zero-field electronic conductivity yields κe/T = 0.16 + 3.0T 2. As

soon as a magnetic field is applied this temperature dependence is completely suppressed.

The temperature dependence of the 0.8 Tesla electronic term is completely flat, as seen

in the inset of Figure 9.3. The most reasonable explanation for such a dramatic effect

is that the quasiparticles are scattered by vortices, and that the additional temperature

dependent part of κe/T is extremely sensitive to scattering rate.

We may rule out the possibility that the change in temperature dependence between

zero and applied field is due to scattering of phonons by vortices by noting the lack of

field dependence above 0.8 T. By increasing the field to 13 T, an order of magnitude

more vortices have been introduced to the system, yet the total conductivity remains

essentially unchanged.

9.2.1 Zero magnetic field (H=0)

In chapter 3 we saw that using a quasiclassical theory formulated at low temperatures

where heat transport is limited by electron scattering, thermal conductivity was universal

in the zero temperature limit. Extending this calculation to finite temperatures Graf

et.al. [88] find:
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Figure 9.3: Electronic thermal conductivity, plotted as κe/T vs T , for magnetic fields from zero
to 13 T. The electronic contribution is extracted as discussed in the main text. Inset: The low
field curves plotted against T 2.
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)2
]

(9.1)

where κ00/T is the universal conductivity limit, γ is the impurity bandwidth and the

coefficient a is strongly dependent on the scattering phase shift (Equation 3.18, restated

here for clarity). This expression is valid in the dirty limit where kBT < γ. Recalling

the fit to the zero field data from Figure 9.1 we see that the temperature dependence

of our extracted electronic conductivity is well described by this form. From this fit we

find that the coefficient of T 3 term in equation 9.1 is equal to 19.2. Remarkably, this

corresponds to a huge 20-fold increase in κe/T by 1 K.

9.2.2 H = 0: Finite temperature

From the temperature dependent part of our fitted data we can estimate the impurity

bandwidth and scattering rate. In a d-wave superconductor with a cylindrical Fermi

surface Hirschfeld and Goldenfeld [80] have examined the dependence of the impurity

band width γ on the scattering rate Γ in the limit of both weak and strong scattering.

For scattering in the unitary limit a = 1/2 and the impurity bandwidth γ is related
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to the normal-state scattering rate Γn by the relation γ = 0.63
√

∆0Γn [80]. Using the

value from the fitted zero-field data (inset of Figure 9.3), we obtain γ ∼ 0.25 K and using

∆0 = 2.14 kBTc, we get Γn/Tc ∼ 10−5, therefore Γn ∼ 1×108 s−1. Such a small scattering

rate is unrealistic. Using vF = 2.5 × 107 cm/s [1], it would imply a normal-state mean

free path as long as the longest dimension of the sample: l ∼ 1 mm! This enormous mean

free path would be some 10 times greater than that in the purest GaAs [194] grown by

molecular beam epitaxy, which is certainly incorrect.

In the weak scattering Born approximation, the impurity bandwidth is exponentially

dependent upon the normal state scattering rate, so that γ = 4∆0 exp(−π∆0/2Γn).

The coefficient a is then given by the slope of the gap at the nodes and the scattering

lifetime, a = (πv2τ0)/2. Assuming a pure d-wave gap gives the result v2 = 2∆0/~kF ,

which we have used previously to extract a gap maximum from measurements of κ0/T

in chapter 8. Using the fact that τ0 = 1/2Γn, and kF ∼ 0.7 Å leads to γ ∼ 3 K and

Γn ∼ 0.6∆0 ∼ 2.5 × 1012 s−1. Again we estimate a scattering rate that is unrealistic,

in this case much too large. If the scattering rate were truly this magnitude it would

lead to a substantial suppression of Tc, as noted previously [80], which is not observed

experimentally.

We are then forced to conclude that either the quasiclassical calculation of Hirschfeld

does not capture the physics of quasiparticle impurity scattering in its entirety, or that in

this ultra pure sample of YBCO it is incorrect to treat impurity scattering with a single

isotropic phase shift of either 0 (Born) or π/2 (unitary).

In a broader context, thermal conductivity measurements on other unconventional

superconductors such UPt3 [86] and Sr2RuO4 [195] reveal conductivities that are most

easily, but not completely, understood within the unitary limit. In UPt3 for instance

Suderow and co-workers find that an estimate of γ based on normal state data is some

3 times larger than that obtained from low T κ measurements. The implication of this,

as was seen in our work, is that the scattering rate estimated in the unitary limit from

low temperature data is too small. This in turn leads to mean free paths that are

unexpectedly large, suggesting that the standard theoretical approach to transport in

unconventional superconductors is generally inadequate.

Microwave conductivity measurements [117, 118] on samples of identical quality to

that used in this study have also been compared to current theories of transport in

unconventional superconductors [196]. These measurements reflect some but not all of

the characteristics of weak scattering (Born limit) and point to either inadequacies in the
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Figure 9.4: Thermal conductivity of the underdoped YBa2Cu3O6.75 sample as a function of
field. The zero field power law fit yields κ/T = 0.1mW/K2cm + 2.6T 1.1.

conventional theories, or the need to consider intermediate phase shifts, or both.

9.3 κ(H) in YBa2Cu3O6.75

9.3.1 H = 0

To extend our investigation of thermal transport in the non-universal regime we per-

formed measurements of κ(H) on our underdoped sample of YBa2Cu3O6.75. This sample

was grown in Toronto in a YSZ crucible, was detwinned, and had a resistive Tc of ∼ 61

K (see chapter 6). For this series of experiments, the heat current was again along the

a-axis to avoid chain contributions, with the field applied perpendicular to the ab plane.

The thermal conductivity for this sample at a number of fields is shown in Figure 9.4.

The effect of the field is immediately seen to be analogous to what was observed for the

ultra-pure YBa2Cu3O6.99 sample is section 9.5.2: an additional temperature dependence

to the 0 field data is dramatically suppressed by the application of a modest field of 1

Tesla. Further evolution of the data with field is also seen to consist of a rigid shift in

κ/T . A powerlaw fit to the data yields a linear term of 0.1 mW/K2cm, consistent with

the general trend of reduced κ0/T with doping.
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subtracting off κph(T ) estimated from the 13 Tesla as described in the text. The solid line is a
linear fit to the 0 Tesla κel/T . Inset: Residuals of the of the linear fit to κel/T in zero field.

9.3.2 T dependence of κe, H = 0

Using the arguments outlined in the previous section we take the additional temperature

dependence of the zero field data to be in the electronic channel, and note that the

application of a field destroys it entirely. We may thus take the temperature dependence

of the phonons from a power law fit to the 13 Tesla data as before, with the electronic

contribution at high fields being given by only by the linear term. The power law fit

to the 13 Tesla data reveals that κph(T ) = 1.6 × T 2.4 mW/K2cm, and subtracting this

away from the data at other fields gives the curves seen in Figure 9.5. From the flat T

dependence of the 1 and 4 Tesla data we can see that this treatment works well - the in-

field κel/T is temperature independent up to 500 mK. The temperature dependence of the

remaining electronic component of the zero field data reveals a temperature dependence

that is linear in T, marking a puzzling departure from the YBa2Cu3O6.99 case.

Such a linear dependence of κel/T on T is expected in the clean limit: where kBT > γ.

In this regime the density of states of a d-wave superconductor is known to be linear in

energy [11], which leads to an electronic specific heat (in zero field) of the form:
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Cel = αT 2 =
18ζ(3)
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)
T 2 (9.2)

where ζ(3) = 1.2. The thermal conductivity of these excitations may be estimated using

the kinetic transport theory introduced in section 2.2: κel= 1/3Celv
2
F τe. Combining this

result with equation 9.2 above yields:

κe =
6ζ(3)

π

(
k3

B

~2

) (n

d

)
α2

FLτe

(
vF

v2

)
T 2 (9.3)

We can estimate the electronic scattering time τe by using α2
FL ∼ 1 and the value of

vF /v2 = 10 calculated from the universal linear term. With a T 2 coefficient in κe of 1.3

mW/K3cm, τe is calculated to be 1.40 nS. For a characteristic Fermi velocity of 2.5×107

cm/s this works out to give a mean free path of 350 µm, which seems too large to be

realistic.

A similar quadratic dependence of κe was also reported by Nakamae et.al. [197] in

samples of optimally-doped Bi-2212. In their experiment, electron irradiation was used

to move the sample from the clean limit kBT > γ to the dirty limit kBT < γ. The

phonon contribution in this case was subtracted by comparing measurements before and

after the irradiation. Using similar analysis to ours, they obtained τe = 1.2 pS, an order

of magnitude shorter lifetime than we find. Interestingly, this is roughly consistent with

the estimate of an order of magnitude higher impurity concentration in the best quality

Bi-2212 compared to YSZ grown YBCO coming from the peak in κ below Tc.

What is difficult to understand in both the underdoped YBCO and optimally doped

Bi-2212 study is why the clean limit should be reached at all. From Figure 9.3 we saw

that the T dependence of κe in the ultra-pure overdoped sample was clearly cubic to at

least 500 mK, which places that sample in the dirty limit kBT < γ. Since Bi-2212 and

YSZ grown YBCO are known to be less pure, these samples should be even deeper in

the dirty limit, since γ scales with Γ. Indeed for the underdoped YBCO sample, in the

unitary limit γ ∝ √
∆0 so one would expect γ to grow as the pseudogap energy scale also

increases. At present, this puzzle remains unresolved.

9.4 κ(H) in Y Ba2Cu3O6.50

κ(H) was also measured our ultra-pure BZO grown sample of Y BCO6.50 with the same

field and current alignment. The result, shown in the left hand panel of Figure 9.6 has

similar features to the previous curves - an additional T -dependence of the zero field
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Figure 9.6: Left : Temperature and field dependence of the thermal conductivity in ultra-pure
samples of YBa2Cu3O6.50, with J ‖ a, H ‖ c. Right : The estimated electronic component of
the thermal conductivity of Y BCO6.50 as a function of field. The analysis used for previous
samples appears to fail here.

data is suppressed by the application of a strong magnetic parallel to the c-axis. This

additional T -dependence partially remains as H=0.5 T, but when one changes the field

from 8 to 11 Tesla the data does not shift noticeably.

Using this fact we apply analysis similar to that for the previous samples, where

κe/T is assumed to be T -independent at high field, and any additional T -dependence is

attributed to phonons. Extracting the zero field data of κ(T )/T in this manner results

in the curve shown in the right hand panel of Figure 9.6. It is certainly clear that the

additional T -dependence of κe/T is not T 2, nor is it completely described by a linear fit.

The data actually seems to vary in a sub linear manner, close to
√

T . This is almost

certainly wrong, since extending the curve to zero temperature results in a linear term

that is negative. The most likely explanation is that in subtracting away the phonon term

too much was taken off of the zero-field κe/T , which implies that there must still be some

electronic temperature dependence of κe/T even at 11 Tesla. This correct interpretation

of this observation is for the moment unclear, and further work is needed. Measurements

on thinner samples for instance may reduce the magnitude of the phonon term, thus

making an extraction of κe/T an easier task.
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9.5 H Dependence of κ0/T

In unconventional superconductors, the effect of applying a magnetic field was argued

by Volovik [96] to result in a Doppler shift of extended quasiparticle states. In a nodal

superconductor, this shift induces a finite residual density of states which is expected to

vary as
√

H/Hc2. Experimental verification of this scenario was found for localized states

by the observation of a
√

H dependence of electronic heat capacity on field [98, 99, 101].

For thermal transport, which is sensitive to delocalized states, a similar scaling is ex-

pected. In the theory of Kübert and Hirschfeld [102] the evolution of the residual linear

term with field was stated in chapter 3 to be:

κ(0, H)

T
=

κ0

T

ρ2

ρ
√

1 + ρ2 − sinh−1(ρ)
(9.4)

This expression is valid (to within logarithmic corrections) in the clean limit, where

the energy scale associated with the Doppler shift EH is much larger than impurity

bandwidth γ, neglecting any scattering of the quasiparticles by vortices [102]:

EH ∼ a~
√

2/πvF

√
H/Φ0 (9.5)

where a is a constant determined by the vortex lattice geometry. The parameter ρ is

essentially the ratio of the two relevant energies - the Doppler shift (EH), and the impurity

bandwidth γ (see section 3.4.2 for details). In the dirty limit regime, where EH < γ, ρ

is calculated to be
√

6/πγ/EH , assuming unitary scattering [102].

In Figure 9.7 we show the extrapolated linear term in thermal conductivity at T → 0,

plotted as a function of magnetic field for previous results on optimally doped YSZ-

grown YBCO [61], alongside our new data for YBCO6.99 and YBCO6.75. The values are

normalised by the zero-field value κ0/T . In contrast to the two other YSZ grown samples,

the much purer BZO-grown YBCO6.99 shows a rapid increase at fields below H = 0.4 T

followed by a sudden change to a regime where the field dependence plateaus. We now

turn to a quantitative treatment of these results.

9.5.1 κ0/T vs. H: YBCO6.95

The earlier thermal conductivity measurements [61] in optimally doped YBCO shown in

Figure 9.7 were found to be in good agreement to theory of Kübert and Hirschfeld. The

dotted line through the open circles gives the best fit to equation 9.4 and yields a value

of ρ
√

H = 2.61. Evaluating this fit at 8 Tesla, Chiao et.al. found that γ/EH = 0.67 at
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8 Tesla, indicating that the sample was still close to the dirty limit. Measurements on

Zn doped samples served to further confirm the theory, with estimates of the mean free

path from the fits to equation 9.4 yielding results that are in good agreement to those

obtained from other methods [61]. All of this serves to prove the following - in ordinary

quality, optimally doped YBCO thermal transport is well understood theoretically with

a model that assumes unitary scattering of quasiparticles, and neglects any contribution

from scattering off of vortices.

9.5.2 κ0/T vs. H: YBCO6.99

Clearly the field dependence of the linear term in the BZO-grown sample is of a com-

pletely different character than the YSZ-grown sample. The sharp, initial rise of the

conductivity is expected given the greatly enhanced purity of the crystal, but the abrupt

plateau above 0.5 T is not. This occurs at the same low field that the additional T

dependence in κe/T is suppressed, as seen in Figure 9.7. We interpret this as an ad-

ditional scattering mechanism that kicks in at low fields, almost certainly an indication
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that quasiparticle-vortex scattering is strongly influencing the transport in this very clean

material. An obvious question is why this behaviour is manifest in this sample and not

others. Assuming the impurity and vortex-quasparticle scattering mechanisms add in

a Matthiessen-like manner, at zero field the conductivity will be in the impurity dom-

inated regime, while in the very high field limit vortices will dominate the scattering.

The crossover between these two limits will depend on the relative amount of impurity

scattering and the cross-section for vortex scattering. In this model the fact that both

the YBCO6.95 and the YBCO6.99 crystal have similar values of κ0(H)/κ0(0) is perhaps

not surprising - at high enough fields the impurity scattering is dwarfed by the vortex

scattering.

The dotted line through the black triangles in Figure 9.7 is the best fit for the theory

of Kübert and Hirschfeld [102] to the initial rise of the conductivity, which yields ρ
√

H

= 0.7. To get a feel for the magnitude of this rise we may assume unitary scattering,

although strictly speaking we know this does not adequately account for the temperature

dependence of κe in section 9.5.2. Given the high purity of the sample, and resulting

small γ, one question is whether the crystal is still in the dirty limit EH < γ even at low

fields. Assuming this is the case, and using the fit to the data from Figure 9.7 leads to

γ/EH= 0.8 ( at 0.4 Tesla ) suggesting the sample is still reasonably close to the dirty

limit at low fields. An estimate of EH for H = 0.4 T may be reached by using equation 9.5

with a ∼ 0.5 [61] (for a square vortex lattice) and vF = 2.5 ×107 cm/s. This works out

to give EH ∼ 10 K, which results in γ ∼ 8 K. The unitary limit normal state scattering

rate is then ΓN = γ2/0.40∆0 = 1.1 × 1011s−1 (assuming ∆0 = 2.14kBTc). Intriguingly, if

one performs a similar calculation for the YSZ grown sample at 0.4 Tesla, the scattering

rate deduced from the fit is ΓN = 1.5 × 1012s−1, an order of larger 1. This difference in

scattering rates is in agreement with the relative difference in magnitude inferred from

the rise in thermal conductivity below Tc seen in chapter 7.

For fields greater than 0.4 T, a complete theoretical understanding of the plateau

region is still lacking. One approach, formulated at finite temperatures, is to treat the

scattering of quasiparticles off of a disordered vortex lattice [198]. In the regime that

the mean-free path associated with vortex scattering (`H) is smaller than that imposed

by impurity scattering (`imp), the total mean free path is expected to scale like the

intervortex distance, av = ε
√

Hc2/H. Since the Volovik effect produces a heat capacity

1This value is somewhat larger than that originally derived by Chiao et.al., since I have used updated
measurements of vF = 2.5× 107 cm/s as opposed to 1.0 × 107 cm/s as was used in the original work
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that varies as k0NF T
√

H/Hc2, the kinetic theory of thermal conductivity requires that

κ = 1/3cV ` be universal with field.

Although this treatment has not been extended to the T = 0 limit, the phenomenology

is essentially agrees with our observations, and provides a natural explanation for why

a plateau should be observed in Y BCO6.99 and not Y BCO6.95 - the sample with the

enhanced purity would be more likely to be in a regime where `imp remains shorter than

`H . What remains surprising is the sharpness with which this regime is entered.

9.5.3 κ0/T vs. H: YBCO6.75

We now turn to the field dependence of the residual linear term in the underdoped

sample of YSZ grown YBCO with y=6.75. It is not at all straightforward to anticipate

the behaviour of the in-field low temperature thermal transport as doping is decreased.

What is understood is that as p is lowered the effects of quantum fluctuations of the

superconducting order parameter should grow as the superconducting critical point is

reached [199]. This, coupled with the fact that hidden order may manifest itself in the

vortex cores of underdoped cuprates makes transport calculations in this regime difficult.

The data in Figure 9.7 suggests a behaviour that is closer to that expected from the

semiclassical theory of Kübert and Hirschfeld [102] than that observed in the YBCO6.99

sample. There appears to be a fairly sharp initial rise, followed by a crossover into a

regime where the field dependence is reduced, but certainly not absent. The dotted line

shows the best attempt to fit to the semiclassical theory, with the result that ρ
√

H = 1.3.

At 13 Tesla, EH is 60 K with a and vF as before. From the fit this suggests that γ/EH

= 0.26, using the dirty limit expression for ρ (Equation 3.22). This result places the

sample towards the clean regime, where the Doppler shift energy scale is the dominant

energy scale in the problem. In this limit, assuming unitary scattering, the parameter ρ

is related to the normal state scattering rate Γ in Equation 3.23 Using EH = 60 K and

∆0 = 50 meV (from the zero field value of the linear term) gives Γ = 1.3 ×1011s−1.

For an optimally doped sample of YSZ grown YBCO, ~Γ/kBTc0 was estimated to

be 0.014 from a combination of resistivity, microwave and infrared measurements [60].

In this case, ~Γ/kBTc0 gives 0.016, which is in remarkable agreement with these values.

What this suggests is that even in the underdoped regime a semi-classical treatment of

transport does a reasonable job at describing κ(H) in crystals of ordinary purity, although

additional data points at low fields would help to strengthen this assertion.
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9.5.4 κ0/T vs. H: YBCO6.50

Extracting the linear term from powerlaw fits to the BZO-grown sample of YBCO6.50 is a

difficult task. The curvature of the data is large, and the powerlaw fits often yield results

that vary depending on the range of fitting. In order to account for this uncertainty, the

data was fit from 0 - 550 mK for all fields, but the error bars were determined by noting

how much the extrapolated value of κ0/T varied when one changed the temperature

range the fit was performed over. This is usually not a concern for most samples since

κ0/T is often robust to changes in the fit range. The results can be seen in Figure 9.8,

plotted as both κ0/T vs. H and normalized to the zero field value.

Due to the large error bars on the values of κ0/T it is not possible at this stage to

fit the data to theory. The large uncertainty in the values could possibly be due low

temperature downturns resulting from poor contacts ( see section 10.2.1 ), although it

is difficult to see why this would be the case. Electrically the contacts were excellent

at room temperature and thermally they behaved well down to 50 mK. A more likely

explanation is that a simple power law fit does not adequately capture the physics of

low-T transport in this sample.

A simple and informative test of the role that disorder plays in setting the field de-

pendence of the thermal conductivity would be to measure an ordered and disordered

version of the same sample. Tuning the order may be achieved simply by heating the

ortho-II sample, thereby randomly distributing the oxygen atoms in the chain layer and

enhance the scattering rate Γ.

9.6 κ/T : H > 0, T > 0

One of the outstanding unresolved puzzles in the cuprate transport literature is the

experimental observation by Krishana, Ong and co-workers [173] of a high field plateau

in the value of κ at finite temperatures. They reported that the evolution of κ with field

at T < 20K consisted of a sharp rise followed by a plateau above some H∗ ∝ Hc2 (T/Tc)
2.

This observation was initially held up as a possible example of a field-induced transition

to a state where the Fermi surface is fully gapped - ie. d → d + id′. Experimental

confirmation of this interpretation with other techniques remains weak, compelling a

search for alternative explanations.

Given our assertion that vortex scattering plays a non-neglible role in setting the

mean free path for low T transport in the ultra-pure sample of YBCO6.99, we plot the
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field dependence of an isotherm at 0.5 K in Figure 9.9 using the data of Krishana et.al

[173] alongside our own. This remarkable similarity, measured here for the first time

in YBCO, is suggestive of a common origin. Since the present work is on a sample

of the highest purity and in field-cooled measurements, this phenomena cannot simply

be dismissed as material dependent extrinsic behaviour. The hysteresis seen in other

Bi-2212 measurements [200] is also naturally explained by the dominance of vortex scat-

tering. The dramatic difference in magnitude between these two measurements is likely

a consequence of the small electronic conductivity relative to the phonon contribution

(which has not been subtracted) at 6 K in Bi-2212 and the comparatively huge electronic

contribution measured in this high-purity YBCO.

An alternative explanation has recently been offered by Franz and Vafek [39]. In

their fully quantum-mechanical theory, the Meissner state (at zero field) and the vortex

state emerge as two distinct d-wave states with different quasiparticle effective velocities.

They both exhibit universal conductivity, with different values of the universal limit.

This appealingly accounts for the fact that the conductivity of the two different YBCO

samples is the same not only at zero field but also at high fields (see Figure 9.7). It is



9: Thermal Conductivity in the Vortex State of Y Ba2Cu3Oy 120

 0  5  10

0.6

0.8

1.0

Magnetic Field [T]

κ(
H

)/
κ(

0)

Bi−2212 (6 K (x 50))

YBCO6.99 (0.5 K )

YBCO6.75 (0.5 K )

Figure 9.9: Normalized thermal conductivity at fixed, finite temperature versus field for the
ultra-pure YBCO and underdoped YBCO crystals. The data is compared to that for Bi-2212
[173] at 6 K, magnified by a factor of 50.

not clear, however, why the finite temperature correction to this universal limit should

be so dramatically different in the two states.

9.7 Chapter summary

The principal conclusions from this chapter are primarily drawn from the study of the

ultra-pure YBCO6.99 sample. When analysed in terms of the quasiclassical theory of

transport for a d-wave superconductor, the thermal conductivity of this sample reveals

two features: 1) the universal limit as T → 0 is confirmed, 2) the usual assumption that

impurity scattering can be treated as single isotropic phase shift in the unitary limit (or

the Born limit) is incorrect. Transport theory as it stands must be revised, at least in the

clean limit, perhaps by going to intermediate phase shifts and maybe in more profound

ways.

Moreover, in the presence of a magnetic field, we find that transport appears to

be rapidly dominated by vortex scattering in ultra pure samples of YBCO, which can

therefore not be neglected as it usually is.
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κ in the Stoichiometric Underdoped Cuprate YBa2Cu4O8

10.1 Chapter overview

In Chapter 8 we have seen that reducing the hole concentration p in both YBCO and

LSCO leads to a reduction in the residual linear term measured in thermal conductivity.

This firmly established trend seems strangely at odds with a report by Hussey et.al. [5]

that claims the absence of any finite κ0/T in the double chained YBa2Cu4O8 (Y-124)

system. This system is a highly desirable candidate to study given that it can be prepared

with virtually negligible levels of disorder, and is understood to be naturally underdoped

with a Tc of 80 K. In this chapter I summarize the results of our work on low temperature

thermal conductivity measurements of the Y-124 system. In contrast to the previous

data, a sizable linear term is seen in zero field. With an applied magnetic field along the

c-axis, novel dependence of the a-axis thermal conductivity at finite temperatures and at

T=0 is observed, likely a manifestation of the extremely low impurity scattering rate.

10.2 κ in YBa2Cu4O8: H = 0,T = 0

The thermal conductivity of two samples of Y-124 was measured using the standard

techniques and procedures outlined in chapter 4, in both zero and applied magnetic

fields with H ‖ c and J ‖ a or b. The field was swept only when T > Tc, to ensure a

homogenous vortex lattice. The results for samples B and D are shown in figure 10.1.

From the resistivity curves shown in section 6.5.5 we determine that these samples are

aligned along the a and b axis for respectively. We have set the magnitude of the geometric

factor by normalizing our resistivity curves to those reported in the literature [138] since

the extremely small size of the samples made direct determination of dimensions difficult

(see section 6.5.5).

The data in figure 10.1 is plotted alongside the previous results of Hussey et.al. [5]

which purported to show a linear term of zero for transport in both the a and b direc-

121
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tions. Using a simple linear extrapolation on our data for both crystals results in a finite

and robust linear terms of magnitude of 0.16 and 0.24 mW/K2cm for sample A and D

respectively. It is interesting to note that if one extrapolates the a-axis data of Hussey

et.al. from above ∼ 250 mK the value of κ0/T is identical to what we observe, suggesting

a mechanism that suppresses the low temperature part of their data. The b-axis data for

both groups matches at high temperatures, but diverges as T=0 is approached.

10.2.1 Anomalous low temperature downturns in cuprates

In an effort to resolve the discrepancy between these two sets of data, Smith, Paglione,

Walker and Taillefer [201] have developed a model which suggests a simple mechanism

for the observed “downturns” in thermal conductivity. The basic idea is that below

some sufficiently low threshold temperature TD, the phonon and electron heat baths

may become thermally decoupled. If the quality of the electrical contacts to the sample

is poor, heat is transferred directly to the phonon bath and is not transferred to the

electron bath which implies that the temperature of the sample thermometers are not a

true indication of the temperature of the electron bath. The authors have shown that
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in the limit where the electrical resistance of the contacts Rel(c) is comparable to the

electrical resistance of the sample Rel then the low T limit of the electronic thermal

conductivity in the universal regime takes the following form:

κe/T = α
1

1 + r
1+r(T/TD)n−1

(10.1)

where r=Rel(c)/Rel, n is between 4 and 5 and TD is determined by the dimensions of the

samples and the electron-phonon matrix element. In the limit that the sample electrical

contacts are very good, r → 0 and the thermal conductivity recovers the usual form κe/T

∼ α.

If the contacts are electrically poor (r À 1, equation 10.1 produces a downturn in

κe/T which would give an erroneously small linear term. This model was found to work

very well to describe similar observations on the LSCO and PCCO systems [201] and is

most likely the cause of the different results observed in figure 10.1. The contacts to our

samples were made from evaporated gold and annealed for sufficiently long that their

resistances were sub-Ohmic. All contacts on sample A had Rel(c) < 100mΩ at 4 K. This

is at least an order of magnitude improvement over the silver epoxy contacts of Hussey

et.al. [202]

10.2.2 Ruling out experimental errors

To give added confidence that the observation of a finite linear term in Y-124 is correct,

we rule out two possible sources of contamination in our data. Heat losses through the

leads and supports of the thermometers could in theory shift the data upwards and yield

a false residual linear term. Provided that the conductance of the sample plus contacts

is much greater than the conductance of this path, the effect should be negligible. The

left hand panel of Figure 10.2 shows the calculated conductance based on the estimates

of the Kapton supports and PtW wires provided in chapter 4 alongside the measured

conductance of the sample plus contacts. Even for the extremely small Y-124 sample D

the conductance of the sample is at least on order of magnitude greater than that of the

heat loss paths, ruling out any chance that the finite κ0/T is an artifact of heat losses.

As we shall see in section 10.5 the value of the residual linear term in this compound

is remarkably sensitive to field. If any sizable stray fields existed within the cryostat this

could presumably lead to an inflated value of κ0/T . The magnet was “zeroed” before

the 0 Tesla run by sweeping the field between positive and negative values of successively
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Figure 10.2: Left: Conductance of the two Y-124 samples and their contacts, plotted alongside
the estimate of the conductance of the heat loss paths in our mount using the data of Radebaugh
[108] (see section 4.4 for details). Right: Two separate zero field runs on sample D. The magnet
was initially zeroed for the first run, then ramped to 13 Tesla and re-zeroed for the second run.

smaller fields until H=0 was reached. This procedure should eliminate any sizable stray

fields, but in order to double check the magnet was “re-zeroed” with the sample at T > Tc

after the 13 Tesla run. The samples were remeasured at H = 0 T and the data for sample

D for both runs is shown side by side in the right hand panel of figure 10.2. If there was a

shift caused by stray fields it is difficult to see how applying the zeroing procedure twice

should yield precisely the same residual field, and precisely the same linear term. We

view this as conclusive evidence that the value of the H=0 term is robust.

10.2.3 Magnitude of the linear term

The precise value of the residual linear term in Y-124 samples A and D is determined by

applying the powerlaw fitting procedure to equation 2.15. Figure 10.3 shows the results

for each crystal plotted as a function of Tα, and the fitting parameters are summarized

in table 10.1.

The overall error in the linear term is assessed from 3 sources - the error associated

with fitting, the sensitivity of κ0/T to fit range, and the overall uncertainty in the absolute

value of the resistivity, which we use to define our geometric factors and is estimated to be

on the order of 20% [203]. For heat current in either planar direction the value of κ0/T

seems rather large, even making generous allowances for error. For optimally doped

YBCO6.95 the magnitude of the linear term is for instance only 0.12-0.14 mW/K2cm.
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Figure 10.3: Left: Powerlaw fit to the thermal conductivity data of the Y-124 sample with
J ‖ a-axis. The values of α are given in Table 10.1. Right: Powerlaw fit to the thermal
conductivity data of the Y-124 sample with J ‖ b-axis. The small size of this sample caused it
to be susceptible to vibrations of the sample mount, which limited the usable data T > 150mK.

There is also a marked anisotropy in the value of κ0/T , which may arise due to contribu-

tions to the zero energy density of states from the double chains. Comparing the values

from table 10.1 the b/a anisotropy ratio is 1.7±0.5, with the large error bars arising from

uncertainties in the geometric factor determination. Interestingly, in the single chained

YBCO system at optimal doping, a slightly smaller T = 0 anisotropy is observed [204]

- κ0,b/κ0,b = 1.3 ±0.3, although the two agree within errors. In YBCO6.9 the authors

argue that the small value of the anisotropy (much smaller than that from resistivity in

the normal state) suggests that the chain states are either fully gapped or localized. In

the double chain system the converse is true, the chain states are delocalized and have no

energy gap. This difference could arise from the fact that these samples of Y-124 posses

at least 100 times lower levels of disorder than their single chain counterparts.

We may put this into perspective by computing the values of vF /v2 and ∆0 for this

compound as we did in chapter 8. Using Equation 3.14 with d/n = 6.81 Å[137] and

taking the a-axis value of κ0/T = 0.18 mW/K2cm gives vF /v2 = 20. Band structure

estimates suggest that vF is the same in both the Y-123 and Y-124 systems [205], so we

may take vF to be 2.5 × 107 cm/s as before. Assuming a pure d-wave gap this gives

us ∆0 = 29 meV, which is surprisingly small. If we define p ∼ 0.12 by Tc and formula

6.1 (taking Tmax
c to be 93 K) then this value of the gap falls well below what one would

expect from the doping evolution in the single chained system, as seen in figure 10.4.
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Figure 10.4: The value of the superconducting gap maximum derived from the residual linear
term in Y-124 compared with other cuprates from chapter 8. The dotted line is a fit to strong
coupling BCS theory, with a coupling constant of 4.2.

How does one account for this? It is tempting from the value of ∆0 in figure 10.4 to

claim that the superconducting state in Y-124 is fully accounted for by strong coupling

BCS theory, with µ=4.2. The assertion however is difficult to reconcile with the obser-

vation that normal state properties in the system show clear evidence of a pseudogap,

and that the low energy quasiparticles in Y-123 are governed by the energy scale of this

gap. It is much more likely that either the assumption of a perfect d-wave order para-

meter used in deriving ∆0 in incorrect, or that states from the chains may contribute to

transport even with J ⊥ b.

10.2.4 Analysis of the a− b anisotropy

Wu, Branch and Carbotte have studied the universal conductivity of a superconductor

with an order parameter than is largely d-wave in nature, but contains a subdominant

s-wave component [206]. Such a scenario is not unexpected in some cuprates due to

the orthorhombicity of the crystal structure, and has been reported in some tunnelling

measurements [207, 208, 209]. Note that such an order parameter in no way affects the

observation of a linear term, since only an order parameter with a complex or extremely
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Table 10.1: Table summarizing the results of powerlaw fits to the 0 field thermal
conductivity data on two samples of YBa2Cu4O8.

Sample κ0/T (mW/K2cm) B α

YBa2Cu4O8 A (a-axis) 0.177 ± 0.015 7.4 ± 0.2 2.09 ± 0.02

YBa2Cu4O8 D (b-axis) 0.29 ± 0.05 8.05 ± 0.3 2.38 ± 0.07

large, positive s-wave component would serve to lift the nodes off of the Fermi surface.

In their model Wu et.al. treat a gap of the form ∆k = ∆0(k
2
x + k2

y + s) where s is the

s-wave gap component, which may be positive or negative. In the polar representation,

with φ representing the angle around the Fermi surface, the angular dependence of the

gap becomes:

f(φ) =
cos(2φ) + α

1 + αcos(2φ)
+ s (10.2)

where α is given by the quasiparticle mass anisotropy

α ≡ ma −mb

ma + mb

. (10.3)

In the dirty limit, where kBT ¿ γ the anisotropic ratio of the residual linear terms

is governed by the parameters s and α as well as the zero temperature values of the

penetration depth λ0.

κ0,a/κ0,b =
λ2

0,b

λ2
0,a

(1− α)(1− s)

(1 + α)(1 + s)
(10.4)

The zero temperature values of the penetration depth along both axes have been

measured independently by microwave [180] and infrared techniques [185], and are in

good agreement. Wu et.al. find the anisotropy in λ0 is a direct measure of the parameter

α [206]:

λa(0)

λb(0)
=

ma

mb

=
1− α

1 + α
(10.5)

With λ0,a = 1880 Å and λ0,b = 860 Å from reference [180] we get α = 0.65. Utilizing

Equation 10.4 with the observed thermal conductivity anisotropy of 1.7 then yields s =

-0.86. These numbers are remarkably large, and produce a gap that is grossly deformed

from the pure d-wave case, with the nodes shifted well away from the diagonals. This
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topology is plotted is figure 10.5, and is likely too distended to be physical. Given the

very high anisotropy of the penetration depth measurements, we would need to see a

much larger anisotropy in the thermal channel in order to extract a sensibly small value

of s and α.
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Figure 10.5: The value of the angular dependent part of the superconducting order parameter in
the d + s wave scenario of Wu et.al. [206]. The gap structure is calculated with the parameters
α=0.65 and s=-0.86 extracted from thermal conductivity and penetration depth measurements
[180].

It is peculiar that the anisotropy observed previously in Y-123 and now Y-124 is

much smaller than that observed in normal state conductivity and penetration depth

measurements. In a separate work, Wu and Carbotte [210] have proposed that in the

case where the gap is dx2−y2 the chain Fermi surface may be gapped due to its quasi

one dimensional nature. At sufficiently low energies this would lift any observed a − b

anisotropy.

10.3 κ in YBa2Cu4O8: H = 0, T >0

The temperature dependence for the thermal conductivity of the a-axis sample is shown

in figure 10.5 for several fields. It is immediately obvious that the field dependence of the

data bears no qualitative resemblance to any Y-123 sample yet measured. The 0 field
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Figure 10.6: Thermal conductivity data for YBa2Cu4O8 with j ‖ a and H ‖ c for various fields
plotted to high temperatures. The line through the zero field data is the result of a power law
fit to Equation 6.1.

data for instance shows less of a temperature dependence that does the in-field data,

suggesting that there is a temperature dependent electronic term that is enhanced by

the application of a field. This excludes the use of the analytical techniques of chapter

9, where the infield data was used to estimate the lattice thermal conductivity.

Hussey et.al. have estimated that even in these remarkably pure samples the impurity

band width γ estimated for J ‖ b is still sizable - on the order of 14 K [5]. This estimate

assumes unitary scattering, but the scattering phase shift in this material may be closer

to the Born limit as we have seen in the ultra pure Y-123 samples in chapter 9. Clear

evidence to distinguish between these two scenarios can be found in the temperature

dependence of the electronic part of κel. However with no accurate way to subtract off

the phonons from the 0 Tesla data we will have to be satisfied with a crude estimate

based on geometrical considerations.

In the boundary scattering regime, κ=κel+1/3βvph`0T
3 (Equation 2.13) where the

coefficient β is from the lattice heat capacity, `0 is the phononic mean free path and vph

is the average acoustic sound velocity. The mean free path in this regime is determined

from the dimensions of the sample, 2 × π
√

w` where w and l are the width and length
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of the sample respectively. Taking suitable values for β (0.5 ± 0.1 mT/molK4) [5] and

vph (5 ± 1 × 105cm/s) [211] with `0 = 0.17 ± 0.02 mm gives κph ∼ 9.9 mW/K4cm± 3.

The 0 field data fits very well to a simple boundary scattering picture, even in a free fit

the powerlaw exponent comes out to be ∼ 3. This fit yields a T 3 coefficient of 6.9 +/- 0.1

mW/K4cm, which is in good agreement with our crude estimate of κph. Using a similar

analysis, Hussey et.al. find agreement with 3 of their samples [5], with a slightly larger

measured T 3 coefficient that arises from fitting to below TD defined in section 10.2.1.

From this we can conclude the following: any additional temperature dependence

of the electronic coefficient in zero field must be relatively small. For comparison, in

YBCO6.99 we estimated an electronic T 3 term of 3.1 mW/K4cm. The second order

correction to the electronic thermal conductivity in the universal regime goes as a2/γT 3

[88], so one may expect for the ultra clean Y-124 system an enhanced electronic T 3

should be observed. Although the error bars on our estimate of κph are large, it would

be hard to attribute a majority of the measured T 3 in Y-124 to electrons. The size of the

electronic T 3 term in Y-124 must then be on the order of that observed in YBCO6.99.

10.4 κ in YBa2Cu4O8: H > 0, T >0

The evolution of the finite temperature data with field is an increase in slope as H is

increased, as seen in figure 10.5. To quantify this trend we may assume that the phonons

are field independent, and subtract the zero field curve from the in field data. Although

this may subtract away some of the T dependence of κel, we can view the subtracted

data as a lower bound on κel(H, T ). The result of this subtraction is displayed in figure

10.7, plotted as κ/T vs. T 2, and summarized in Table 10.2. Below 500 mK the growth

of κel with temperature is observed to be cubic in T , and the coefficient of this term

increases with increasing H. In the universal regime, this additional T dependence could

be attributed to the second order correction of κel/T as in the YBCO6.99 case. The

outstanding question then is the size of the impurity band γ in this material. Using the

b-axis residual resistivity and plasma frequency, Hussey et.al. [5] estimate that γ ∼ 14

K, well above the temperatures accessed in our experiment.

The persistence of the T 3 term to high fields is still somewhat surprising given the

strong role that vortex-quasiparticle scattering was shown to play in ultra-pure Y-123.

The stoichiometric nature of the compound suggests a plausible explanation - extremely

low disorder results in very low vortex pinning, and thus a vortex lattice that is almost
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Figure 10.7: In field thermal conductivity data for YBa2Cu4O8 with j ‖ a, with the zero field
data subtracted.

perfectly ordered. Such a distribution of vortices would have a negligible impact of

quasiparticles, a direct consequence of Bloch’s theorem. In this respect a comparative

study of the vortex lattice in Y-123 and Y-124 by scanning probe microscopy would be

useful.

A second possibility is that the T 3 term cannot be analysed within the framework of

a semi-classical theory of mixed-state transport, but needs a full quantum mechanical

treatment to understand

10.5 κ in YBa2Cu4O8: H > 0, T = 0

Using a floating power law fit we extract the residual linear term as a function of field.

The growth of κ0/T with H is truly remarkable, eclipsing the already rapid growth in the

ultra-pure YBCO6.99 sample by a factor of 3. Figure 10.7 shows this growth expressed

as κ0/T vs. H, and as the linear term normalized by the zero field value, compared to

previous results in Y-123.

Qualitatively the H dependence of the data is similar to the YBCO6.99 case, a rapid

initial rise that is cut-off by some mechanism at low fields, resulting in a nearly flat H
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Table 10.2: Table summarizing the T 3 coefficient of κ(H)/T−κ(0)/T in YBa2Cu4O8.

H ‖ c [T] T 3 Coefficient of κ(H)/T − κ(0)/T [mW/K4cm]

0.1 2.2

1 4.9

5.3 7.0

10 7.9

dependence above 1 Tesla. In the ultra-pure Y-123 case, it was argued that the cutoff

arose from a sizable vortex scattering term. If this is indeed the cause of the plateau in

Y-124 then the hypothesis that the field dependence of the T 3 arises from the electronic

channel is very surprising, given its sensitivity to scattering. If one accepts that the

plateau is a result of vortex effects, then the H dependence of the finite temperature

data cannot be accounted for in the standard theory of Graf. et.al. [88].

The initial rise in the data was fit to the semi-classical theory of Kübert and Hirschfeld

[102] (Equation 9.4), with the result that ρ
√

H = 0.25 ± 0.04. We can consider the two

limiting cases for the interpretation of ρ: the clean limit where γ < EH and the dirty

limit where γ > EH . In the dirty limit case, we evaluate the situation at the upper range

of the fit - 1 Tesla. At this field the Doppler shift energy EH is 17 K, using the same

values for a and vF for the Y-124 compound as for the Y-123 compound in chapter 9.

Using the dirty limit expression for ρ, Equation 3.22, yields a γ of 3.1 K - placing the

sample solidly in the clean limit even at low fields.

In the clean regime, we have seen previously that ρ =[8ΓHc2/(π
2a2∆0H)0.5] where Γ

is the normal state scattering rate, a is the vortex lattice constant and ∆0 is the super-

conducting gap maximum (Equation 3.23. Using a=1/2 and ∆0 = 30 meV from the zero

field value of the linear term yields Γ = 1.7× 1010s−1. Remarkably, this value is exactly

an order of magnitude less than that estimate using a similar analysis on YBCO6.99 and

two orders of magnitude less than that estimated for YBCO6.95. This scaling is pre-

cisely what was predicted from the relative peak heights in the high temperature thermal

conductivity in chapter 6.
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Figure 10.8: Main : Normalized value of the residual linear term in YBa2Cu4O8 as a function
of field. The results are compared to the Y-123 samples from chapter 8. For each crystal, J
‖ a, B ‖ c. The dotted line is a fit of the initial rise of the data to the semiclassical theory of
quasiparticle transport of Kübert and Hirschfeld [102]. Inset : Residual linear versus field, as
in the main panel but un-normalized.

10.6 Chapter summary

We have used measurements of thermal conductivity to resolve a long standing issue in

the cuprate thermal transport literature. Contrary to previous results [5] we see a robust

and sizable residual linear term in YBa2Cu4O8. The magnitude of this term is however

larger than expected, leading to an estimate of the low-energy gap that does not follow

the trend with doping observed in YBCOy. With the application of a magnetic field, the

residual linear term is seen to grow more rapidly than in any previous measurement, likely

due to the low disorder within the crystal. The in-field finite temperature data is observed

to increase in slope as the field is increased, contrary to all previous measurements in the

YBa2Cu3Oy system.
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Normal State Charge Transport in Ultra-pure YBCO

11.1 Chapter overview

Up to this point, the majority of information on transport properties in the normal, non-

superconducting state of underdoped cuprates has been limited to the LSCO family of

compounds. To study the normal state in the absence of superconductivity, one typically

suppresses the superconducting order by the application of very strong magnetic fields.

This is difficult to achieve in cuprates, since the upper critical field in YBCO is on the

order of ∼ 200 Tesla1. The consensus from studies of the LSCO family is that upon

application of a strong magnetic field, the resistivity is insulator like (dρ/dT < 1). The

resistivity shows a log(1/T) like behaviour for moderately underdoped materials, and

diverges much more strongly for p < pSC , where pSC is the critical doping needed for the

onset of superconductivity.

In YBCO, information on the normal state is mostly limited to samples where Zn

doping has been used to suppress Tc and Hc2. Both of these systems however have large

amounts of in plane disorder, whether from Zn impurities in doped YBCO or from Sr

substitution in LSCO. In this section we ask the question: what is the nature of transport

in the normal state of underdoped cuprates where disorder is minimized? To answer

this we take two approaches. The first is to perform resistivity measurements in high

quality, homogenous single crystals of YBCO samples prepared so that the hole doping

p is slightly less than pSC and the samples are non-superconducting in zero field. The

second is to suppress superconductivity with a strong magnetic field - around 10 Tesla in

YBCO6.33 and with very high pulsed magnetic fields (H > 50 Tesla) in ultra pure ortho-II

ordered YBCO6.50, with Tc = 55K. This is the first time the field-induced normal state of

a YBCO sample at such a high doping has been studied. Here I summarize the results of

1In the LSCO system, the Tc and Hc2 at optimal doping are lower, on the order of 60 Tesla. This is
why the largest volume of experimental data exists for this compound.

134
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Figure 11.1: Left : Resistivity in 0 Tesla for YBCO6.33 sample J, as a function of annealing.
The states p1, p2 and p3 are the estimated planar hole concentrations define in the text. The
inset shows a zoom on the low temperature data, clearly showing the evolution from a non
superconducting state at p1 to a superconductor at p3 as a function of annealing. Right : The
same plot for sample L.

these investigations, and contrast the findings with the conclusion drawn from the LSCO

systems.

11.2 Charge transport in the normal state of YBaCuO6.33

We measured the charge transport of six samples of low doped YBCO prepared so that y

∼ 6.33-6.35, near the onset of the superconducting transition. Each of these samples was

of the highest possible purity and quality, grown in BaZrO3 crucibles by the UBC group2.

Four of these samples showed partial resistive transitions near 50 K, consistent with the

existence of a small concentration of ortho-II ordered domains. Although this does not

affect the bulk measurements of thermal conductivity discussed in the next chapter, we

are limited in the information we may extract from measurements of charge conductivity.

Fortunately, two of these (samples J and L) did not posses such inhomogeneity, and we

confine our discussion to them.

Figure 11.1 shows the resistivity of these two samples measured using the equipment

and methods discussed in chapter 4. Each sample was delivered to Sherbrooke on dry

2Further information on the preparation and characterization of these crystals is described in detail in
chapter 6.
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ice, having been quenched immediately after growth to lock in oxygen disorder. We then

measured the crystals as soon as was possible - approximately 5 hours elapsed between

removing samples from their container and cooling them down in the fridge. We repeated

the measurement on two additional occasions, after ∼ 48 hours and after 3 weeks spent

at 300 K. The effects of annealing are quite dramatic, the samples smoothly evolve from

a non-superconducting to superconducting state while remaining fixed on the mount.

When the superconducting state was entered, we applied a magnetic field of 10 Tesla

to suppress Tc to zero. In this way we may compare the charge conductivity of the two

states lying on either side of the quantum critical point at pSC . After the final anneal

the samples had a Tc of ∼ 5 K, and an 11.5 Tesla field was no longer able to destroy

superconductivity down to the lowest temperatures.

Two peculiar facts emerge from the curves in Figure 11.1. First, the curve for the

first short anneal (state p1) is rigidly offset across the entire temperature regime. This

could point to the fact that not only is doping being affected by annealing, but the

elastic scattering rate (determined by disorder and impurities) is changing as well. In

this scenario the enhancement in oxygen coordination reduces the in plane scattering

rate by reducing the disorder.

The second observation is the occurrence of paraconductivity in the resistivity curves

near the superconducting transition. The gentle roll off of the ρ vs. T curve near Tc indi-

cates the presence of considerable superconducting fluctuations, extending in this case to

almost 15K, as observed in sample J. What is curious is that recent low temperature mi-

crowave measurements in similarly doped YBCO show no indication of such fluctuations

[212].

11.2.1 Metal-to-insulator transition in YBCO vs. LSCO

Early pulsed field work by Boebinger et.al. [157] has revealed insulating behaviour in

LSCO samples from low doping all the way up to optimal doping at p=0.16. This has been

interpreted as evidence of a quantum critical point occurring underneath the peak in the

superconducting dome, where the ground state abruptly changes from one that is metallic

in nature to one that is insulating. In a similar experiment on Bi2Sr2−xLaxCuO6+δ

(La doped Bi2201) the same group has reported [213, 214] dρ/dT < 0 to a doping

intermediate between the onset of superconductivity at pSC and optimal doping, close

to p = 1/8. The proposed doping phase diagram of this compound is reproduced from

reference [213] in figure 11.2.
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Figure 11.2: The doping phase diagram of La-doped Bi2201 as revealed by pulsed field resistivity
measurements (adapted from Ono et.al. [213]). A metal-to-insulator transition is proposed to
exist near 1/8 doping, arising from localization arising from 1-d stripe order. The solid symbols
represent the superconducting Tc while the open symbols represent the minimum in resistivity
in the field-induced normal state.

The authors speculate that the insulating behaviour observed in both systems may

be accounted for by charge localization due to the presence of stripe order observed with

neutron scattering [49]. This observation begs the question as to whether a similar metal-

to-insulator transition should be observed in YBCO, which shows no signs of static stripe

order [54] and indeed whether the features of normal state transport understood from

LSCO and La-doped Bi2201 are universal to cuprates.

Normal state transport, p < pSC

We compare our results for transport with doping p < pSC on samples of LSCO with 5 %

Sr doping and with a YBCO sample with y=6.37 from the literature. The LSCO crystal

was measured and grown in our own lab [62, 7], while the YBCO sample measured by

Gantmahker et.al. [215] was grown in an alumina crucible [216]. All three samples were

non-superconducting in zero field, and their resistivity is shown in figure 11.3. What is

immediately apparent is the dramatic difference between the LSCO and YBCO systems.

The LSCO 5% grows by a factor of 140 while cooling from 20 to 0.3 K, while our YBCO

sample increases by only a modest amount - a factor of 1.5 over the same temperature
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range. This dramatic difference could signal two things. First, the level of material

disorder in the LSCO compound is much greater than that in YBCO, which leads to

stronger insulating behaviour. Alternatively (or additionally), the LSCO ground state

may be host to some form of order that is not present in the YBCO system, an order

that strongly inhibits charge transport.

It is also apparent that the YBCO sample grown in a comparatively dirty environment

posses a sharper upturn at low temperatures. Based on the reasoning in chapter 7 the

BaZrO3 grown YBCO6.33 is at least 10 times more pure than the YBCO6.37 sample of

Gantmahker et.al., with a correspondingly reduced upturn as T → 0. This suggests

that the localization in the ground state of YBCO is disorder driven, indeed it seems

that further increases in crystal purity would serve to remove the insulating behaviour

altogether.

A non-superconducting YBCO sample with y=6.22 has been studied by Ando et.al.

and a sharp upturn in resistivity has been observed [217], consistent with the magnitudes

of the upturns in similarly doped LSCO. The authors therefore argue that transport

across the lightly doped regime is universal in both systems. The present YBCO data

however contradicts this claim, since the magnitude and temperature dependence of the

low temperature resistivity is drastically reduced, indicating a much more metallic ground

state in the YBCO system, at least at this doping.

Normal state transport, p > pSC

We now compare the LSCO and YBCO systems at dopings just above the threshold

needed for superconductivity, p > pSC . In this regime Hc2 is sufficiently small that

superconductivity may be suppressed by conventional static magnets with fields ∼ 13

Tesla applied along the c-axis. In LSCO, we study a sample with Sr = 6 %, which has

a Tc of 8 K in zero field. In YBCO we study the same sample as above, sufficiently

annealed so that Tc = 0.1 K in zero field. We again compare the normal state resistivity

to a sample of Gantmahker’s with similar Tc to ours [215].

The resistivity of these samples in fields greater than Hc2 is shown in figure 11.4. The

LSCO sample again shows a much larger increase in resistivity at low temperatures, it

increases by a factor of 8.4 in cooling from 20 K to 300mK under a field of 15 Tesla3.

3Note that the normal state magnetoresistance of cuprates is known to be quite weak, so measurements
performed slightly above Hc2 will give the same temperature dependence as those performed just above
Hc2.
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Figure 11.3: Main : Zero field resistivity of low doped cuprate samples with p < pSC . The
LSCO and ultra-pure YBCO6.33 sample were measured in our lab, while the YBCO6.37 sample
was measured by Gantmahker et.al. [215]. The degree of insulating behaviour correlates with
the estimated disorder levels in the 3 crystals. Inset : The low temperature resistivity plotted
on a semilog scale.

The BaZrO3 grown YBCO increases only by a factor of 1.4 over the same temperature

range, while the alumina grown same of Gantmahker increases by 2.64. In the case of

the BaZrO3 the upturn is extremely small, whether one calls this a metal or an insulator

is almost relegated to a matter of semantics. This dramatic difference in magnitudes

again points to two conclusions - the increased disorder in LSCO increases the degree of

charge localization, and the ground state of LSCO may somehow be different than that

of YBCO.

Strong evidence for the latter point is found in recent easements of in-field inelastic

neutron scattering in underdoped LSCO [55]. Lake et.al. have revealed that the appli-

cation of a 15 Tesla magnetic field in a sample of La1.9Sr0.1CuO4 greatly enhances the

static spin order. This observation is suggestive of an anti-ferromagnetically ordered

ground state in the LSCO system. The presence of static spin order could account for

the impeded electrical transport evident in our LSCO samples. Indeed, recent ARPES

measurements [219] by Shen et.al. have detected a small gap around the nodes of lightly

doped LSCO, Ca2−xNaxCuO2Cl2 and Nd2−xCexCuO4. The authors speculate that such

4Similar results were found by Seidler et. al. [218].
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Figure 11.4: Main : Resistivity in the field induced normal state of low doped cuprate samples
with p > pSC and H ‖c. The LSCO and ultra-pure YBCO6.33 sample were measured in our
lab, while the YBCO6.37 sample was measured by Gantmahker et.al. [215]. Inset : The low
temperature resistivity plotted on a semilog scale.

a gap may arise either from intrinsic disorder and localization within these systems, or

the presence of static spin density wave order - similar conclusions to our own.

In this context it is interesting to note that the overall magnitude and temperature

dependence of the resistivity does not change significantly in moving from the state with

p < pSC to the state with p > pSC . This is true in both our ultra-pure samples, and the

less pure specimens of Gantmahker et.al. This continuity is suggestive that the ground

state undergoes no dramatic change in character at p = pSC i.e. a metal-to-insulator

transition is not pinned to pSC in YBCO.

Finally, it is commenting on the suppression of the resistivity near Tc in the 0 field

curves of the fully annealed samples of YBCO6.33, as seen in the inset of figure 11.1. This

effect is well-known to occur from fluctuations of the superconducting order parameter

[40], which may enhance the electrical conductivity significantly in materials with a low

phase stiffness. These fluctuations however are curiously absent in the latest microwave

penetration depth measurements on similarly doped samples, where a strictly linear in

T dependence of 1/λ2 is observed right up to Tc [212]. This discrepancy is currently

unexplained.
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11.2.2 Temperature dependence of the insulating behaviour

The temperature dependence of the divergence in resistivity at low temperatures holds

valuable information about the localization mechanism. For LSCO with dopings less

than pSC the temperature dependence of the resistivity is seen to be strongly insulating,

as T → 0. Ando et.al. measured resistivity in LSCO samples with dopings from 1 - 5

% Sr, and observe a resistivity which diverges such that lnρ ∼ T−β (β = 1/2,1/3,1/4

depending on the dimensionality [220, 217]). This behaviour is expected in the strong

localization limit, where transport is achieved by variable-range hopping (VRH), and is

observed in our 5 % Sr doped sample seen in Figure 11.3 [62]. In this sample a fit to

ρ = A×T4/3eTo/T∧(1/3) (the 2D limit of VRH) gives A = 0.104 ± 0.037 mΩ cm K−3/4

and To = 286 ± 17 K, with a high goodness of fit. Recently, using magneto-resistance

measurements Cieplak et.al. have argued that this temperature dependence arises from

strong spin scattering in very low doped LSCO [221].

For higher dopings, a crossover to a resistivity in which ρ ∼ log(1/T) is seen in

LSCO [222]. Suppressing superconductivity with a pulsed field the authors observed a

logarithmic divergence of the resistivity which persisted to samples with p = 0.13. Similar

divergences are observed for our LSCO 6 % sample in 15 Tesla, and in the YBCO sample

measured by Gantmahker. To facilitate the comparison, the data for these samples are

plotted alongside ours on a logarithmic plot in figure 11.5. For each compound, the state

with p < pSC is measured in zero field, and the state with p > pSC is measured with an

applied field larger than Hc2. A clear log(1/T) dependence of the resistivity is observed

over a large temperatures range only in our sample L prior to annealing (with p < pSC).

In the other cases the temperature dependence is weaker than log(1/T), as indicated by

the roll-off at low temperatures. This could possibly be explained by the proximity to

superconducting order, and the paraconductivity associated with it. There is evidence

for the effects of fluctuations of this sort in lightly doped YBCO. In a study of samples

of YBCO with dopings y = 6.2 - 6.5 Semba et. al. [223] concluded that the doping

dependence of ρ(TC) was driven by quantum phase fluctuations of the order parameter.

Such a temperature dependence is expected in the case of weak-localization, in the

limit where corrections to metallic behaviour are small [224], and transport is in the

metallic regime kF ` À 1. The electronic mean free path ` may be estimated from the

resistivity using the fact that [148]:
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Figure 11.5: Resistivity of YBCO6.33 in the normal state for p < pSC and p > pSC . The fits
are of the form ρ ∼ log(1/T).

` = hc0/ρkF e2 (11.1)

where c0 is the c-axis lattice constant. In our samples, ρ is ∼ 600 µΩ cm at the minimum

of resistivity, and thus kF ` = 5.1 although it has been noted that this formula underes-

timates ` for nodal quasiparticles [225, 221]. Thus transport is in the metallic regime,

although it is clear that the corrections to metallic behaviour are not vanishing small.

In a 2D system the standard expression for weak localization corrections to the con-

ductivity σ is [224]:

σ(T ) = σ0 +
p

2

e2

~π2
ln

T

T0

(11.2)

where p is the temperature coefficient of the inelastic scattering, and T0 is the localization

onset temperature5. We compare our data to this theory by plotting the conductance on

a logarithmic scale, as in figure 11.6.

The basic result is that the observed conductivity in the normal state is not simply due

to weak localization. In both the p < pSC and p > pSC cases there is significant curvature

to the conductivity, and the fit to equation 11.2 is poor. The peculiar sub logarithmic

5The same temperature dependence may also arise from strong electron-electron interactions [224]
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Figure 11.6: Conductivity of YBCO6.33 in the normal state for p < pSC and p > pSC . The
black line is fit to equation 11.2.

temperature dependence of ρ in our samples may thus be significantly influenced by

quantum fluctuations, or may emerge to be the hallmark of new physics.

11.3 Charge transport in the normal state of YBaCuO6.50

To study the normal state transport in YBCO samples with higher doping, it is necessary

to move beyond the limits of static magnetic field technology. Even in a sample with a

Tc of 5 K, 11.5 Tesla was insufficient in suppressing superconductivity. To access higher

fields we performed resistivity measurements at the Laboratoire National des Champs

Magnétiques Pulsés in Toulouse, France in collaboration with Cyril Proust of the CNRS.

Using the methods and apparatus discussed in section 4.5 we measured a sample of

BaZrO3 grown, ortho-II ordered YBCO6.50 in pulsed fields as high as 55 Tesla. The fields

were applied such that H ‖ c, and the current was along the a-axis, perpendicular to the

chains. The overall disorder of this stoichiometric compound is expected to be very low.

The magnetoresistance of the YBCO6.50 crystal is shown for various temperatures

in figure 11.7. At the lowest experimentally accessible temperature of 500 mK, the

pulsed field is seen to suppress superconductivity entirely, judging by the plateauing of

the magnetoresistance data about 50 Tesla. At higher temperatures, the plateau region

grows, following the evolution of Hc2 with temperature. It is immediately clear that there



11: Normal State Charge Transport in Ultra-pure YBCO 144

 0  20  40
 0

 200

 400

T = 0.49 K

T = 0.9 K

T = 1.2 K

T = 1.6 K

T = 4.2 K

T = 10 K

T = 30 K

T = 50 K

B [T]

R
es

is
iti

vi
ty

 [µ
Ω

cm
]

Figure 11.7: Magnetoresistance to 55 Tesla in ortho-II ordered YBCO6.50.

is a small upturn in the data at low temperatures, as the higher temperature curves fall

slightly below the lower temperature ones6. The magnitude of this upturn however is

small, and the temperature dependence at very low T is almost masked by the noise in

the data, which originates from vibrations of the sample during the field pulse.

To track the temperature dependence of the resistivity in the normal state, we may

either take the raw data in 55 T, or try to account for the small, temperature dependent

positive magnetoresistance observed in the normal state. In a normal metal we should

expect the magnetoresistance to scale as ∼ B2, but from the field dependence of the data

here it appears to evolve in a linear fashion. Thus, we attempt to extrapolate backwards

to zero Tesla using an empirical linear fit to account for magnetoresistance corrections,

as is shown in figure 11.87. This fit is likely an overestimate of the actual correction,

but it serves to show that the magnitude of the upturn may be accounted for by a small

amount of magnetoresistance. The metallic behaviour of underdoped YBCO is most

apparent when compared to other cuprates at similar dopings. With a Tc of 55K the

6It should be noted that the data taken in the higher temperature probe was scaled downwards by
7 % in order to match more closely with the zero field curve. Such small discrepancies are sometimes
present in pulsed field measurements due to vibrations of the contacts and sample during the pulsed
field sweep. I have included the error caused by this scaling in the error bars estimated for the normal
state resistivity points.

7The raw data has been smoothed by using a sliding average of 200 data points in order to better
accommodate the fitting routine.
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Figure 11.8: Linear extrapolation of the magneto-resistance in YBCO6.50 to H=0. The data
was fit above Hc2, determined to be where the slope of the magneto-resistance deviates from a
linear fit. Note that the data has been smoothed slightly compared to the raw data in figure
11.7 by performing a sliding average over a window in field to remove some of the noise.

use of equation 6.1 yields an estimate of p ∼ 0.09. We may thus directly compare with

an LSCO sample with a Sr doping of 9%, which we have also measured in pulsed fields

at Toulouse [62]. Similarly, a sample of Bi2Sr2−xLaxCuO6+δ (BSLCO) with x=0.84 and

is estimated to have a doping p = 0.1 ± 0.01 [226]. We plot our data for YBCO and

LSCO alongside the data for the La-doped Bi2201 crystal measured by Ono et.al. [227]

in Figure 11.9.

The difference in the low T limiting behaviour is quite dramatic. In both the LSCO

and BSLCO systems the resistivity has a strong upturn as T → 0, while in the clean

YBCO system the upturn is modest, only a factor of 1.5 in cooling from 50 K to 0.5

K. Using the naive correction for normal state magnetoresistance discussed above yields

data that essentially produces little or no upturn at low temperatures altogether. From

these observations we conclude that the ground state of a clean, underdoped sample

of YBCO6.50 is essentially a metal. As at lower dopings, this suggests that either a

localization mechanism present in the LSCO is absent in YBCO (eg. spin density wave

order), or the ultra low disorder in the stoichiometric YBCO wipes out any vestiges of

the metal-to-insulator transition at this doping.
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Figure 11.9: Main : Temperature dependence of the normal state resistivity at 55 Tesla in
YBCO6.50. The 0 field data is also plotted (solid line). For comparison, normal state data
for cuprates with similar doping (p ∼ 0.09) is plotted. The LSCO data is on a sample with
9% Sr, from our own lab, and the BSLCO data is from reference [227]. Inset : The 0 field
and pulsed field data for the YBCO sample using both the raw 55 Tesla data points and the
magneto-resistance correction scheme discussed in the text.

11.4 Chapter summary

In this chapter we have studied the normal state electrical transport of ultra-pure YBCO

samples via two routes: through underdoping such that p < pSC , and suppressing super-

conductivity with a large static, or pulsed magnetic field. In very low doped samples of

YBCO6.33 and moderately underdoped sample of YBCO6.50 the conclusions are similar -

the ground state is revealed to be essentially metallic, with relatively tiny traces of an

upturn at low temperatures possibly due to weak localization. In both samples we com-

pare the results to those obtained using similar techniques in the more disordered LSCO

system. We find little evidence for the dramatic metal-to-insulator transition observed

in LSCO at moderate dopings, emphasizing that lessons learned from the phase diagram

of LSCO are not necessarily generic to the cuprates.
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WF law violation in ultra-pure YBCO

12.1 Chapter Overview

Electrons in cuprates adopt a remarkable sequence of ground states as one varies the

density of charge carriers. The undoped parent compound is a Mott insulator, where

strong Coulomb interactions prevent electrons from being mobile. In the overdoped

regime, the cuprates posses metallic conductivity, and the basic properties of Fermi liquid

[58]. At intermediate density, it is a superconductor with d-wave symmetry, but the

nature of the underdoped phase that lies between the insulator and the superconductor

is one of the central puzzles of the field. It is known to be characterised by a pseudogap,

and is thought by several authors to be an exotic state of matter [228, 45, 47, 229].

One of the most fundamental tests of this enigmatic phase is to study the conduction

of heat and charge in the limit T → 0. The ratio of the two has been found to obey

κ/σT=L0, where L0 is the Lorenz number in virtually all known materials, a basic

property of a Fermi liquid. Measurements of low temperature thermal transport were

used to investigate the ground state of high purity single crystals of the lightly doped

cuprate YBa2Cu3O6.33. Samples were investigated on either side of the superconducting

phase boundary, in both zero and applied magnetic field. Here I report the observation

of delocalized fermionic excitations at zero energy in the non-superconducting state,

which reveals that the ground state of clean underdoped cuprates is metallic, in contrast

to the insulating ground state observed in underdoped La2−xSrxCuO4. The ratio of

heat to charge transport in this newly uncovered metallic state was found to violate the

Wiedemann-Franz law, the first observation of its kind in an underdoped cuprate.

12.2 Heat transport in low-doped cuprates

In this chapter I present a comparative study of heat transport in two cuprate materials

YBa2Cu3Oy (YBCO) and La2−xSrxCuO4 (LSCO), with the former being prepared with

147
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Figure 12.1: A : Temperature-doping phase diagram of the cuprates. We focus on low doped
samples with p ∼ 0.05, near pSC . Bt : Magnetic field - doping phase diagram of YBCO.
We measure samples that are non-superconducting in zero field, (p < pSC) and samples that
have sufficiently low Hc2 such that the normal state may be reached by applying 10 Tesla
perpendicular to the c-axis. We also measure samples at higher dopings. C : Magnetic field -
doping phase diagram for our LSCO samples used for comparison.

a much lower level of intrinsic disorder, as discussed in chapter 6. The effect of doping

on the electron system is investigated by comparing samples with doping on either side

of the critical doping for the onset of superconductivity pSC , for each material. Com-

bining these studies of κ with the results from charge transport studies presented in the

previous chapter, we address two fundamental questions in the cuprates: does the onset

of superconductivity coincide with the onset of hole mobility, and does the T=0 ground

state that gives rise to superconductivity play host to novel physics?

Our basic approach is outlined in Figure 12.1. We first study thermal conductivity

in both LSCO and YBCO samples prepared such that p < pSC , which are not super-

conducting in zero field. By allowing the YBCO sample to anneal at room temperature,

as discussed in chapter 5, p increases above the threshold for superconductivity pSC and
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the samples eventually become bulk superconductors with Tc ∼ 5 K. We move across the

phase boundary in LSCO by preparing samples with a slightly higher concentration of

Sr.

In both systems we may suppress superconductivity for p > pSC by the application

of a strong magnetic field applied such that H ‖ c, shown schematically in the bottom

panels of Figure 12.1.

Single crystal samples of YBCO of the highest available purity were used for this

study, grown in the BaZrO3 crucibles discussed in chapter 6. As noted previously, in

these materials there is ample evidence of extremely long electronic mean free paths [118]

estimated to be approximately two orders of magnitude longer [1] than in the best LSCO

crystals. In total 6 samples 1were measured with oxygen content y=6.33-6.35. Of these

samples J and L were the most revealing, possessing no downturns in their resistivity

and allowing for a direct comparison of heat and charge. The other 4 samples however

yielded good quality thermal conductivity data, and we begin our discussion by tracking

the value of the linear term in zero field, as a function of p. The hole concentration

for each YBCO sample was estimated using the empirical relation between Tc and p,

Equation 6.1, where Tc is taken to be the temperature at which ρ=0. For LSCO, two

samples are used: one non-superconducting (Tc = 0) with x=0.05 (p < pSC) and one

superconducting (Tc = 5 K) with x=0.06 (p > pSC), where we simply use p = x, the Sr

concentration.

12.2.1 Comparison of κ in YBCO and LSCO p < pSC

The main panel of Figure 12.2 shows the thermal conductivity of the 5 % sample of

LSCO and the unannealed YBCO sample L, both of which are non superconducting

in zero field, and have p ∼ 0.05. The data was fit to the powerlaw form of Equation

2.15, and is plotted as κ/T vs. T α−1 to provide a straightforward way of extrapolating to

T = 0, and obtain the residual linear term κ0/T [1]. The absence of a residual linear term

(κ0/T = 0) indicates the absence of fermionic carriers as in an insulator or a fully gapped

(s-wave) superconductor. A finite (non-zero) value can be attributed unambiguously to

delocalized fermionic excitations. In either case, the slope of the curves is a measure of

the phonon conductivity [1].

It can be seen that the value of the residual linear term in the YBCO6.33 sample is

1These are denoted samples B,F,H,J,K,L and detailed characterization information for each is presented
in chapter 6.
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Figure 12.2: Thermal conductivity of underdoped cuprates in the non-superconducting state.
Both samples of YBCO and LSCO have a hole concentration p close to, but less than pSC , the
critical concentration for the onset of superconductivity. The YBCO sample shows a sizable
residual linear term κ0/T , indicating the presence of delocalized fermionic carriers of heat. By
contrast, the LSCO sample shows a vanishing small value of κ0/T , consistent with an insulating
state.

significantly smaller than that of an optimally doped sample (κ0/T ∼ 0.14 mW/K2cm

for YBCO6.95), but is still sizable: κ0/T = 47 ± 8 µW K−2 cm−1. Special care was taken

to establish accurate error bars for these fits by varying the fit range, as summarized

in Appendix 3. This result is much larger than that obtained for an undoped crystal

[1] (y=0.0) where κ0/T = 0 ± 1 µW K−2 cm−1. By contrast, the LSCO sample yields

a vanishing small linear term of κ0/T = 3 ± 1 µW K−2 cm−1, just as in the undoped

(x = 0.0) material [7], indicating a ground state devoid of delocalized carriers for all p

< pSC (i.e. x < 0.05). This observation points to a fundamental difference between the

two systems. As one adds carriers to the parent insulator in clean samples of YBCO,

the ground state becomes metallic before the emergence of superconductivity, while in

LSCO the ground state is an insulator right up to pSC . This is a fundamentally new

result - a study of 2D organic conductors as a function of pressure (rather than doping)

has found that the electron system goes directly from insulator to superconductor, with
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Figure 12.3: Thermal conductivity data for YBCO6.33 sample L, in the non superconducting
state (p < pSC) and in the superconducting state (p > pSC with Tc = 5K). The superconducting
state is accessed by annealing the sample at room temperature for 3 weeks. The value of the
linear term is identical to within the errors in the extrapolated fit.

no intermediate phase [230]. The same has recently been found in V2O3 [231].

Having uncovered a metallic phase in a lightly-doped cuprate with no long-range

superconducting order, we explore some of the basic properties of its low-lying excitations.

Specifically, we ask 1) whether the entropy-carrying fermions also carry charge, 2) how

they compare to the well-understood d-wave nodal quasiparticles of the superconducting

state (at p > pSC), and 3) how they respond to a magnetic field.

12.2.2 Comparison of κ in YBCO and LSCO p > pSC

We investigate the superconducting state of both cuprates by annealing the YBCO sam-

ples such that p > pSC and measuring an LSCO sample with higher Sr content. Figure

12.3 shows the result for sample L, where the non superconducting state κ data is plotted

with the data taken when the sample was a bulk superconductor with a Tc of 5 K. A

change is slope is noted between the two curves, but the fundamental result is that the

extrapolated value of the linear term does not change when moving across the super-

conducting phase boundary at pSC . The slight difference between the two samples is
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Figure 12.4: The residual linear term versus doping for all samples, all anneals in 0 T. p is
estimated from 6.1 where Tc from where ρ =0. The error bars are taken as the sum of the 3
errors discussed in text.

well within the error of the fits. Further evidence for this is found by combining data

for all samples, for each anneal as in Figure 12.42. The value of the linear term, within

error, remains at an essentially constant value of ∼ 40 µW K−2 cm−1 in this region of

the cuprate doping diagram.

What conclusions can we draw from this apparent insensitivity to the superconduct-

ing phase transition? In a d-wave superconductor, nodal quasiparticles are low-lying

fermionic excitations that give rise to a finite κ0/T , the magnitude of which is governed

entirely by their Dirac energy spectrum. In the universal limit, where the residual linear

term is independent of impurity concentration, the value of κ0/T only depends on the

ratio vF /v2, where vF and v2 are the quasiparticle velocities perpendicular and parallel

to the Fermi surface, respectively [59], as in Equation 3.14.

It is straightforward to use such measurements to extract an estimate of the super-

conducting gap maximum, assuming a simple d-wave gap of the form ∆ = ∆0 cos 2φ, so

that 2∆0 = ~kF v2 as in chapter 8. For the highly-underdoped YBCO samples measured

here, the linear term of approximately 40 µW K−2 cm−1 implies a gap maximum of 160

2Fits to all samples and a discussion of error is presented in Appendix 3
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meV, which suggests that the in-plane exchange coupling energy J of the Mott insulator,

estimated to be 125 meV [232], sets the magnitude of ∆0. Note that this type of analysis

is only valid in the universal limit (i.e. when the scattering rate is small compared to

∆0), a condition which was indeed verified in YBCO at y = 6.9 and 6.5 [1].

Two important points emerge from Figure 12.4. First, given that the residual linear

term is solidly understood as arising from nodal quasiparticles in the superconducting

state, its seamless evolution into the non-superconducting state below pSC suggests that

a nodal spectrum is also a characteristic of that metallic phase. Strictly speaking, the

ultimate test of such a spectrum is the demonstration of universality with respect to

variations in impurity concentration. It is likely that in the 6 samples grown in vari-

ous batches there is some variation in impurity concentration, as well as difference in

scattering rate arising from oxygen inhomogeneity. It is however difficult at this point

to quantify this variation, and we leave the verification of universality in low doped

cuprates for future work. Of particular interest in that respect is the ortho-III inverse

arrangement of oxygen (one full chain followed by two empty chains.) Such a compound

is superconducting in 0 T and stoichiometric, which would reduce the in plane scattering

rate associated with the oxygen chain atoms. A comparison of an ordered and disordered

sample of this compound would be very revealing.

The second important conclusion one may draw is that YBCO appears to be quali-

tatively different from LSCO. While in the former the quantum phase transition at pSC

has no impact on the conductivity of the electron system, in the latter it corresponds

to a (thermal) metal-insulator transition. Indeed in LSCO, κ0/T goes to zero precisely

where superconductivity disappears. The very same situation was observed to occur as

a function of applied magnetic field, for p > pSC : the transition from thermal metal

(d-wave superconductor) to insulator was found to be simultaneous with the suppression

of superconductivity, occurring right at the resistive upper critical field Hc2, for a LSCO

sample with x = 0.06 [7]. The difference between YBCO and LSCO may lie in the greater

amount of disorder found in LSCO, which would cause the non-superconducting state of

LSCO near p = pSC to be an insulator (thermally and electrically). However, if LSCO

were merely a disordered version of YBCO, it is hard to see why the metal-to-insulator

transition would be pinned to the onset of superconductivity (at pSC). The latter fact

points instead to another explanation, namely a scenario of competing phases where the

other phase (e.g. with SDW order) is insulating, for example as a result of having a small

gap at the nodes [219]. Along these lines, recent neutron scattering studies [55, 233] of
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underdoped LSCO in a magnetic field have revealed a field-induced increase in static

SDW order. This happens in parallel with the field-induced decrease in conductivity [7].

The induced magnetic order may well serve to either gap out or localize the fermionic

excitations responsible for heat transport as T → 0.

12.2.3 κ(H) in low doped YBCO and LSCO

Let us now examine the response of both systems to a magnetic field applied perpendic-

ular to the CuO2 planes. In a d-wave superconductor, the superfluid flow around each

vortex causes a Doppler shift of the quasiparticle energies and thus an increase in the

zero-energy density of states. This should lead to an increase in thermal conductivity.

In YBCO near optimal doping, an increase in κ0/T was observed to be on the order of

a factor 2 in 10 T or so [61]. In LSCO, a similar increase is seen at optimal doping, but

for p < 0.1, κ0/T was found to decrease [7]. This decrease is a signature of the thermal

metal-to-insulator transition at H = Hc2. In YBCO, no such decrease is observed for p

close to pSC (or anywhere). In fact, a field of 10 T has very little effect, whether p < pSC

or p > pSC , as summarized in the tables in Appendix 3. This can be seen in Figure 12.4

where we plot the thermal conductivity of YBCO sample L with a Tc of 0.1 K in zero

field. The application of a 10 Tesla field forces the sample into the normal state (ie. no

transition is observed in resistivity), however the thermal conductivity data is unaffected

- the residual linear term is ∼ 41 µW K−2 cm−1 in both cases. The data for the LSCO

6% crystal is shown for comparison - the application of a 13 Tesla field also suppresses

superconductivity entirely, but forces the linear term from a finite value to 0 [7].

The same behaviour is seen in all low doped YBCO samples - even where 13 Tesla is

not enough to suppress superconductivity entirely. The data for each crystal is shown in

Figure 12.6, where the in-field linear term is divided by the zero-field linear term. In the

range of dopings covered in these samples, Figure 12.5 demonstrates that the effects of

a magnetic field are negligible. The conclusion is, therefore, that in YBCO near pSC the

thermal conductivity does not change across the phase boundary, whether one reaches

the non-superconducting state by decreasing p at fixed H = 0 or by increasing H at fixed

p > pSC .

This is reminiscent of previous spectroscopic studies (ARPES [36] and tunnelling

[23]) which found the gap in underdoped cuprates to persist largely unchanged as the

temperature was increased from below to above Tc. The observation of this “pseudogap”

above Tc has been interpreted as the persistence of pairing amplitude (gap) once long-
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Figure 12.5: Thermal conductivity of underdoped cuprates in the superconducting state (H=0)
and the non-superconducting state (H > Hc2). Both samples of YBCO and LSCO have a hole
concentration p close to, but slightly greater than pSC . The application of a field is seen to
drive the residual electronic conductivity to zero in LSCO, while in YBCO the conductivity
remains unchanged.

range superconducting order has been destroyed by thermal fluctuations of the phase [37].

Within such an interpretation, the fact that our measurements are done essentially at T =

0 would imply a quantum (rather than thermal) disordering of the phase with increasing

magnetic field or decreasing doping. What our study shows is that this putative phase

disordering would leave the system in a metallic ground state. Beyond this particular

interpretation, several theoretical models have been proposed for the pseudogap state of

underdoped cuprates [47, 234, 39]. It remains to be seen which of the proposed states

support both a d-wave-like gap at high energies and fermionic excitations down to zero

energy.

12.3 Comparison of heat and charge transport in YBCO

We now turn our attention to a direct comparison of heat and charge conductivity in

the normal state of YBCO, beginning with the unannealed sample L with p < pSC .

This is the first time such a comparison has been reported, and these results on the

purest crystals available fill in gaps in our knowledge. Figure 12.7 shows the measured
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error, just the fit error and range error.

electrical conductivity of the non-superconducting YBCO sample converted into thermal

units using the Sommerfeld value of the Lorenz number L0 = 2.45 ×10−8WΩ/K2. On

the same scale, the thermal conductivity is also plotted, and it is clear that the two do

not meet at T=0. The ratio of heat to charge conduction in this limit yields a non-trivial

violation of the Wiedemann-Franz law by a factor of 2.7 ± 0.2, the first time this has

been observed in an underdoped cuprate. We immediately pose the question - is this

violation the result of incipient localization, or a fingerprint of fundamental new physics?

It is clear from the temperature dependence of the resistivity presented in chapter

11 that some small amount of localization is present in YBCO. As seen in the inset of

12.7, the resistivity increases by a modest factor of 2 in cooling from 20 K to 100 mK, in

dramatic contrast to LSCO where the resistivity diverges strongly as T → 0, growing by

a factor of 3000 over the same interval. Whether weak localization of quasiparticles can

account for such a large violation in the T=0 limit is at present unknown.

A broader perspective can be achieved by placing these latest results in the context

of previous studies of the Wiedemann-Franz law in cuprates. Violations have been ob-

served at optimal doping in the electron doped material PCCO [235], and at optimal

doping [236] in Bi2+xSr2−xCuO6+δ where a small violation of 1.3 ± 0.2 was seen when
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Figure 12.7: Main: The thermal and electrical conductivity of YBCO with p < pSC . The
electrical conductivity has been converted into thermal units using the Wiedemann-Franz law,
and the two conductivities do not meet at T = 0. Inset: Resistivity of YBCO and LSCO
samples with p < pSC , indicating the relatively metallic nature of the much less disordered
YBCO system (previously shown in chapter 11).

superconductivity was suppressed with a magnetic field. In a similar experiment in the

overdoped material Tl-2201 the Wiedemann-Franz law was recovered [58]. This suggests

that the normal ground state evolves from a metallic state at overdoping, to one which

increasingly violates the Wiedemann-Franz law as the Mott insulator is approached.

One possible scenario, which is not unexpected in low doped cuprates, is that normal

Fermi-liquid quasiparticles observed at higher dopings are no longer the fundamental

electronic excitations of the ground state [237, 13, 238]. Instead, the electron itself may

fractionalise into a neutral spin-carrying excitation, called a “spinon” and a spinless

charge carrying excitation called a “holon” or chargon. Our data would imply that the

chargon would localize more readily than the spinon - leading to excess transport of

heat and a violation of the Wiedemann-Franz law. Preliminary microwave data from

the UBC group [212] supports such an interpretation. They study the evolution of the

superfluid density through microwave penetration depth measurements as a function

of annealing. They find that the superfluid density becomes anomalously small, and

its slope with temperature suggests the effective charge of in-plane quasiparticles falls
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Table 12.1: Table summarizing the WF-law violation as a function of doping in high
Tc cuprates, using the present work, and data from the literature [236, 58].

Sample Tc (K) p - holes/Cu κ0/T (µW/cmK2) ρ0(µΩcm) L/L0

YBCO6.33J - 0.048 52.2 ± 3.2 972 ± 50 2.1 ±0.2

YBCO6.33J 0.1 0.050 40.6 ± 2.4 730 ± 37 1.2 ± 0.1

YBCO6.33L - 0.048 46.7 ± 1.9 1460 ± 73 2.8 ± 0.2

YBCO6.33L 0.1 0.050 40.3 ± 3.7 1054 ± 52 1.8 ± 0.2

YBCO6.33B 4 0.053 37.8 ± 1.3 854 ± 85 1.3 ± 0.2

BSCO 10 0.17 320 ± 30 100 1.3 ± 0.2

Tl-2201 15 0.26 3950 ± 40 6.15 ± 0.03 0.99 ± 0.01

smoothly to zero with the superconducting transition temperature. In contrast, the

charge of electrons tunnelling between the CuO2 layers is not renormalized, suggestive of

spin-charge separation in the 2D CuO2 planes. Further work will undoubtedly be needed

to confirm this interpretation, but the preliminary evidence is compelling.

At higher dopings, after J and L had annealed sufficiently such that bulk superconduc-

tivity was achieved, we also find a WF law violation when superconductivity is suppressed

by a magnetic field. The extent of the violation is however reduced, with L/L0 = 1.8 ±
0.2 in sample L. Combined with the previously discussed data in optimal and overdoped

cuprates (summarized in Table A.2) the picture that emerges is one where the onset of the

WF-law violation is very close to pSC . How this violation evolves as the Mott insulator

is approached should be an extremely interesting avenue of investigation. The residual

linear term reaches 0 at p=0, but its doping dependence at very low dopings is completely

unknown. Our first measurements hint at the existence of a novel and unexplored ground

state in the low doped region of clean cuprates, a state in which further measurements

and characterization will almost certainly change our understanding of cuprate physics.

The detailed quantitative comparison of heat and charge in low doped YBCO is now

underway, and these preliminary results3 will need close scrutiny. In order to be fully

convinced that the observed violation is not related to an unforeseen experimental effect,

several tests are underway. The first is performing 6 contact resistivity measurements

3The experimental work summarized in this chapter was performed during the summer and fall of 2004.
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on our samples to complement the 4 wire ones. In such a test there are two sets of

voltage pads, on opposing sides of the crystal. The ratio of the resistance of these pairs

should be a simple geometric factor, if the current flow is homogenous. If there is any

c-axis contribution to the resistance measurement, the temperature dependence of the

ratio will pick this up. A comparison to recent measurements of the surface resistance

by microwaves from the UBC group will also aid in confirming these findings.

12.4 Chapter summary

In conclusion, we have presented evidence to show that the non-superconducting state of

pure cuprates in the underdoped regime of the phase diagram is metallic. The associated

low-energy fermionic excitations have a heat conductivity that evolves seamlessly from

the superconducting phase, which suggests they have a nodal spectrum akin to that of

the d-wave superconductor. In other words, as holes are doped into the Mott insulator, a

metallic ground state is first reached before the onset of phase-coherent superconductivity.

The ability of these excitations to transport heat and charge is found to be unusual, there

is a greater thermal than charge conductivity as T → 0 resulting in a significant violation

of the Wiedemann-Franz law. We propose this as the generic scenario of clean cuprates.

Note that it is not realized in the case of LSCO, which instead shows insulating behaviour,

most likely caused by the presence of static SDW order.
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Summary and future work

13.1 Summary and future work

The measurement of thermal conductivity at ultra-low temperatures provides information

on materials that is very difficult to obtain by other techniques. By extending our

investigations to the T → 0 limit, we reveal information about the quantum mechanical

ground state of a material, information which is vital to understanding the physics of

any system. In the cuprates, this information is particularly crucial, since as a function

of doping these materials reveal a bewildering array of ground states. In the underdoped

regime the nature of the ground state is the subject of considerable controversy, and our

understanding of this regime thus far is derived mainly from systems with high levels of

disorder.

Our study is the first to track the ground state of the very cleanest of these materials

from the overdoped superconductor to the Mott insulator. We provide a wealth of data

over a broad range of doping, and focus particularly in the very low doped region of the

phase diagram where information derived from high quality, homogenous single crystals

does not exist. In doing so we establish for the first time the true nature of the state that

lies on the threshold of superconductivity - in essence, the results in this Thesis reveal a

new phase in the cuprate phase diagram.

13.2 Doping dependence of ∆0

Studies of the residual linear term in thermal conductivity from the overdoped to the

underdoped regime in clean YBCO have, for the first time, revealed the doping depen-

dence of the zero-energy quasiparticle gap. Assuming a d-wave order parameter, the

value of the gap was found to agree precisely with the magnitude of the pseudogap, typ-

ically measured at higher temperatures. This remarkable scaling sheds new light on the

physics of the underdoped regime. First, we confirm that the pseudogap is indeed d-wave

160
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in nature, as suggested from studies of ARPES at T > T ∗ but until now unproven in the

T → 0 limit. Second, we prove that the pseudogap must have nodes, an observation that

precludes any possible transition from a d-wave state to one with a complex component.

Thirdly, the excellent agreement between our T = 0 data and spectroscopic measure-

ments at high temperature implies that the excitations must have a linear dispersion,

in other words the formalism of Durst and Lee works well into the underdoped regime.

This suggests that either the pseudogap is intrinsic in origin and is related to supercon-

ductivity or it requires that any competing order has an identical dispersion relation to

the d-wave superconducting state.

What remains to be reconciled with this picture is the very high value of ∆0 at low

dopings. Although the magnitude agrees favourably with that the antiferromagnetic

exchange energy, a clear picture of how the gap evolves in the low doped region of the

phase diagram is lacking. A series of samples in the regime 6.33< y < 6.50 would be

very useful in this regard and would fill in a large void in the literature. At present,

information on the gap energy scale in this region is very sparse.

All of this underscores the dichotomy of the underdoped phase. The treatment of

quasiparticle excitations in a BCS theory suitably modified to incorporate the nodal

structure of the order parameter is remarkably successful. It yields a gap magnitude that

agrees with independent techniques, and our measurements of samples of similar doping

yet different impurity levels establishes universality. On the other hand, a gap that

increases as superfluid density heads to zero is very unusual. Though the search continues

for an explanation of these observations, our data provides useful new constraints on the

development of theories.

13.3 WF law in lightly doped YBCO

The Wiedemann-Franz law is a fundamental consequence of Fermi-liquid physics. For

over a century it has been observed to hold across countless materials - metals, semicon-

ductors, disordered solids. A natural place to observe a violation of this law might be

expected to be in the underdoped cuprates, where electron electron interactions are large

and the physics is decidedly unconventional. Attempts to study the Wiedemann-Franz

law in these materials have thus far failed. In LSCO as p → pSC a diverging resistivity

and residual linear term that approached zero combined to give a Lorenz ratio that was

inconclusive.
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Our measurements on YBCO presented in this thesis finally provide a possible answer

to this question. We observe, for the first time, a finite residual linear term in the normal

state of YBCO (whether accessed by the application of field or varying doping) and a

corresponding electrical conductivity that obtains a finite value of the T=0 limit. The

ratio of the two leads to a Wiedemann-Franz law that is violated in the limit T → 0

in underdoped high-Tc superconductors. The violation appears to onset at, or very near

the critical doping pSC . The implications of this observation are far-reaching, and raise

numerous questions. Does the violation occur because of the proximity to the Mott

insulating phase? Can the fundamental excitations of this phase contribute to Fermionic

heat transport in the zero temperature limit? Or is the violation perhaps the result of a

novel quantum phase of matter, previously unobserved in 2 dimensional materials, where

the electron splinters into charge and spin carrying constituents? Either picture would

entail a revisal of our understanding of the cuprates.

The very observation of a finite residual linear term in the normal state of YBCO is

an important first. It implies that, unlike LSCO where κ0/T is zero for p < pSC , clean

cuprate superconductors become metallic before they become superconducting. The

observation is exceptionally robust, the same value of linear term is observed six samples

of our low doped YBCO crystals. This is an important new piece of the cuprate puzzle,

and highlights the fact that our understanding of the role of disorder in the high-Tc’s is

far from complete.

The course of study from this point is clear. Further work needs to be done to confirm

the observed violation of the Wiedemann-Franz law by carefully examining the charge

conductivity. A six-contact resistivity measurement on the samples used in this study

would be most useful, to ensure that current flow is homogenous and that any c-axis

contributions to the resistivity are negligible. The next step is to push further into

the underdoped regime towards the Mott insulator. Eventually, one would expect the

linear term to reach zero, but the increasing anti-ferromagnetic correlations may serve to

enhance the linear term. The doping dependence of κ0/T all the way to T=0 would be

extremely revealing.

13.4 Concluding remarks

The results presented in this Thesis emphasize that the cuprates are the host of intriguing

and still unexplained physics. In particular, the studies summarized above challenge
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two of the pillars of modern thought in condensed matter. The establishment of a zero

temperature superconducting gap ∆0 that increases while Tc decreases in the underdoped

regime of YBCO directly contradicts the much celebrated theory of Bardeen Cooper and

Schrieffer. Although the quasiparticle excitations themselves appear to be conventional,

the evolution of the gap most certainly is not, a result that underlies the need for a

comprehensive theory of the underdoped state.

In the extreme underdoped regime, where samples are non-superconducting, our ob-

servation of a metallic state that violates the Wiedemann-Franz law at T=0 has far

reaching implications. Such a state violates the basic assumptions of Fermi-liquid the-

ory, that heat and charge are carried by the same entities and their conductivities are

related by a constant. Fermi-liquid theory is the basic starting place for thinking about

metals, and our observations will require a re-examination of the integrity of the electron

in 2 dimensional materials near a Mott transition.

In closing, this Thesis has demonstrated how a convergence of careful experimental

work and advances in crystal growth can provide new perspectives on the hidden secrets

of high Tc superconductors. The availability of homogenous, high quality YBCO crystals

in the most underdoped region of the phase diagram has opened up an entire new chapter

in cuprate physics, and it is likely that experiments on these samples will be key to settling

many of the current debates in the high Tc community.
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A.1 Physical Dimensions of Samples Used in the Study

A.1.1 YBa2Cu3Oy

Table A.1: Table summarizing the physical dimensions of the YBCO samples used
in this study. ` is the average seperation between the voltage pads, with the errors
determined by the width of the pads.

Sample Name ` (mm) Width (mm) Thickness (µm) α (cm)
Y BCO6.0 old deox A 1.12 ± 0.1 0.61 ± 0.03 153 ± 11 8.3± 1.0e−3

Y BCO6.35 B 1.03 ± 0.09 0.056 ± 0.05 83 ± 10 4.21 ± 0.70 e−3

Y BCO6.35 F 0.46 ± 0.08 0.56 ± 0.05 78 ± 0.05 9.62e−3

Y BCO6.35 H 0.61 ± 0.075 0.51 ± 0.05 32 2.66e−3

Y BCO6.35 J 0.70 ± 0.7 0.34 ± 0.01 4.6 ± 0.1 2.21 ± 0.27e−4

Y BCO6.35 K 0.46 ± 0.4 0.28 ± 0.01 5.9 ± 0.1 3.64 ± 0.40 e−4

Y BCO6.35 L 0.51 ± 0.4 0.31 ± 0.01 7.4 ± 0.1 4.44 ± 0.75 e−4

Y BCO6.55 A 2002 0.59 ± 0.27 ± 0.02 14 ± 2 6.43 e−3

Y BCO6.50 B 0.59 ± 0.06 0.52 ± 0.05 73 ± 1 6.29 ±0.9e−3

Y BCO6.50 C 1.69 ± 0.01 0.66 ± 0.01 25 ± 1 9.7 ±0.9e−4

Y BCO6.6 und F detwin 1.15 ±0.1 0.96 ± 0.05 70 ± 10 5.84 ± 1.02 e−3

Y BCO6.6 und K(detwin) 0.65 ± 0.1 0.25 ± 0.05 45 ± 10 1.73 ± 0.58 e−3

Y BCO6.6 und O(detwin) 0.39 ± 0.04 0.33 ± 0.02 40 ± 5 3.38 ± 0.64 e−3

Y BCO6.6 und S(detwin) 0.68 ± 0.1 0.55 ± 0.05 42 ± 5 3.39 ± 0.72 e−3

Y BCO6.73 robert, detwin 0.88 ± 0.15 0.50 ± 0.03 87 ± 6 4.9± 0.7e−3

Y BCO6.95 A, detwin 0.96 ± 0.1 0.89 ± 0.1 60 ± 10 5.56 ± 1.26 e−3

Y BCO6.95 C, detwin 0.38 ± 0.04 0.44 ± 0.02 45 ± 5 5.3 ±0.8e−3

Y BCO6.95 D, detwin 1.66 ± 0.17 1.40 ± 0.08 80 ± 5 6.8 ±0.9e−3

Y BCO6.95 UBC, detwin 0.97 ± 0.09 0.26 ± 0.02 15 ± 5 4.0 ±1.4e−4

Y BCO6.99 UBC 0.99 ± 0.19 0.52 ± 0.20 25 ± 1 1.3 ±0.2e−3

164
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Table A.2: Table summarizing the physical dimensions of the Y-124 samples used
in this study. ` is the seperation of the voltage pads.

Sample ` (mm) Width (mm) Thickness (µm) α (cm) αρ300K
(cm)

Y 124 A 0.42 ± 0.05 0.15 ± 0.012 62 ± 12 2.28 ±0.56e−5 3.4e−3

Y 124 B 0.44 ± 0.08 0.073 ± 0.008 25 ± 10 4.2 ±1.9e−4 8.2e−4

Y 124 C 0.36 ± 0.04 0.053 ± 0.015 25 ± 10 3.7 ±2e−5 -
Y 124 D 0.32 ± 0.05 0.026 ± 0.004 10 ± 0.4 8.1 ±1.7e−5 1.6e−4

A.1.2 YBa2Cu4O8

This table gives the measured geometric factors for the 4 samples of Y Ba2Cu4O8 used
in this study. The length and width were measured by optical microscope while the
thicknesses were measured with the assistance of Patrick Morales with an SEM. The
column α gives the measured value of the geometric factor, while the column αρ300K

gives
the calculated value of the geometric factor if one normalzies the resistivity at 300 K to
the values that appear in the literature cite [138].
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A.2 Summary of Powerlaw fits to the data of Sun, Ando and

Segawa

Sample Tc Doping κ0/T lin. extr. κ0/T pow. law B α
K p mW/K2cm mW/K2cm

Ando y = 6.45 20 0.063 0.073±0.006 0.039±0.003 6.9 1.58
Ando y = 6.5 39 0.076 0.122±0.013 0.067±0.012 12.0 1.64
Ando y = 6.6 53 0.088 0.14±0.015 0.032±0.020 6.5 1.30
Ando y = 6.7 59 0.093 0.154±0.015 0.109±0.009 6.6 1.49
Ando y = 7.0 91 0.17 0.166±0.016 0.120±0.007 5.6 1.48

Above : Table summarizing the results of power law fitting to the recently published
data of Sun et.al. [3]. The doping is estimated using equation 6.1, and the column
labeled κ0/T lin. extr. are the values of the linear term obtained from a straight line
extrapolation to the data on a T 2 plot, as given in the publication. The column labeled
κ0/T pow. law is the linear term extracted from the fits shown in the figure, with B and
α giving the temperature coefficient and exponent respectively.
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Figure A.1: Powerlaw fits to the data of Sun, Ando and Segawa [3] on the doping dependence of
low temperature thermal transport. The data is plotted as κ/T vs. Tα where α is summarized
in the table of fit parameters above.
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Table A.3: Table summarizing the the powerlaw fits to YBCO6.35 crystals.

Sample κ0/T B α rang err χ2

[µWK−2cm−1] × 10−3

B: 0T, 2002 37.8±0.7 888±4 1.367 ± 0.008 ±1.1 6.3
B: 13T, 2002 36.8± 0.8 910±5 1.374 ± 0.009 ±0.8 7.3
B: 0T, 2003 37.4±0.7 951±5 1.462±0.009 ±1.0 6.5
B: 10 T, 2003 40.7±0.7 1002±6 1.499±0.009 ±0.5 7.5
F: 0T, no anneal 33.7±1.5 1383±7 1.239±0.008 ±1.8 6.8
F: 13 T, no anneal 38.9±1.4 1456±7 1.277±0.008 ±1.6 6.8
F: 0 T, anneal 1 32.7±1.8 1343±8 1.212±0.01 ±2.9 13.1
F: 0 T, anneal 3 33.5±1.1 1319±5 1.212±0.006 ±2.1 5.4
F: 0 T, anneal 4 38.4±0.8 1269±3 1.217±0.005 ±1.1 2.7
F: 12 T, anneal 4 42.3±1.7 1301±8 1.255±0.01 ±2.5 10.7
H: 0 T, no anneal 38.1±1.0 938±5 1.212±0.009 ±4.0 10.2
H: 13 T, no anneal 39.3±1.0 1003±5 1.255±0.008 ±3.5 8.6
H: 0 T, anneal 1 41.1±1.4 965±7 1.243±0.012 ±2.0 15.0
H: 0T, anneal 3 38.8±0.7 909±3 1.204±0.006 ±2.2 4.9
H: 0 T, anneal 4 34.6±0.7 787±3 1.139±0.006 ±0.8 4.4
H: 12T, anneal 4 32.2±1.3 825±5 1.162±0.011 ±4 14.1

A.3 Summary of Powerlaw fits to low doped YBCO samples

The fits to the powerlaw form of equation 2.15 for all samples, for each anneal are sum-
marized in Table A.4 at the end of this chapter. Each fit was performed from 0 to 550
mK, with the error originating from three sources. First, there is a direct fit error , gov-
erned by random noise in the data and calculated using the least-squares fitting program.
Second, there is an error associated with varying the fitting range. The range error is
determined by varying the upper range of the power law fit between 300mK and 600mK
(the limits of a good fit, as indicated by low χ2 values.), and noting how much κ0/T varies
in the process. I take the maximum and minimum in this range, and set the fit range
error = ± 1/2*[κ0/T (max) -κ0(min)/T ]. Finally, the geometric factor error for each of
the samples is determined by measuring the maximum and minimum distance between
the pads, so that ∆ αgeo = ± 1/2 [max (separation) - min (separation)]. The total error
in the residual linear term is thus taken to be the root of the sum of the squares of each
independent source of error ie. ∆κ0/T =

√
(fiterror)2 + (rangeerror)2 + (αgeoerror)2.
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Table A.4: Table summarizing the the powerlaw fits to YBCO6.33 crystals.

Sample κ0/T B α rang err χ2

[µWK−2cm−1] × 10−3

J: 0 T, no anneal 52.2±1.3 886±4 1.148±0.009 ±2.9 5.6
J: 10 T, no anneal 57.4±2 920±5 1.181±0.013 ±5.9 7
J: 0T, anneal 1 40.6±1.2 710±2 0.998±0.007 ±2.1 4.0
J: 10T, anneal 1 46.9±1.2 748±2 1.057±0.007 ±3.3 3.3
J: 0T, anneal 2 28.5±3.1 523±2 0.824±0.012 ±4.0 20.4
J: 11.5T, anneal 2 27.8±3 549±2 0.850±0.015 ±8.5 11.7
K: 0 T, no anneal 33.3±0.4 1159±2 1.300±0.003 ±1.1 1.7
K: 10 T, no anneal 34.2±0.8 1184±4 1.307±0.006 ±1.9 4.1
K: 0T, anneal 1 38.4±0.8 970±4 1.219±0.007 ±2.1 5.4
K: 10T, anneal 1 36.8±1.2 1005±4 1.229±0.008 ±6.6 6.7
K: 0T, anneal 2 35.7±0.7 747±2 1.104±0.006 ±2.3 4.0
K: 11.5T, anneal 2 32.31.6 784±5 1.118±0.012 ±6.2 12.5
L: 0 T, no anneal 46.7±0.6 924±2 1.253±0.005 ±1.8 2.2
L: 10 T, no anneal 45.4±0.8 957±4 1.260±0.007 ±3.5 4.8
L: 0T, anneal 1 40.3±1.1 748±3 1.125±0.009 ±3.5 5.4
L: 10T, anneal 1 43.3±1.1 784±4 1.166±0.009 ±3 6.8
L: 0T, anneal 2 40.0±0.9 567±3 1.016±0.008 ±1.5 11.3
L: 11.5T, anneal 2 32.9±1.1 594±2 1.004±0.008 ±3.6 5.5
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[10] M.R. Norman and C. Pépin. The electronic nature of high temperature supercon-
ductors. Rep. Prog. Phys., 2003.

[11] N.E. Hussey. Low-energy quasiparticles in high-Tc cuprates. Advances in Physics,
51:1685–1771, 2002.

[12] Robert J. Cava. Oxide superconductors. J. Am. Ceram. Soc., 83:5–28, 2000.

[13] P. W. Anderson. The resonating valence bond state in La2CuO4 and superconduc-
tivity. Science, 235:1196, 1987.

[14] Brian Maple. High temperature superconductivity. MRS Bulletin XV, 6:60, 1990.

[15] P. Dai, B.C. Chakoumakos, G.F. Sun, K.W. Wong, D.F. Lu, and Y. Xin. Synthesis
and neutron powder diffraction study of the superconductor HgBa2Ca2Cu3O8+δ by
tl substitution. Physica C, 243:201, 1994.

[16] R. Joynt and L. Taillefer. The superconducting phases of UPt3. Rev. Mod. Phys.,
74:235, 2002.

[17] A. J. Legget. A theoretical description of the new phases of 3He. Rev. Mod. Phys.,
47:331, 1975.

[18] W.N. Hardy, D.A. Bonn, D.C. Morgan, R.X. Liang, and K. Zhange. Precision
measurements of the temperature dependence of lambda in YBa2Cu3O6.95: Strong
evidence for nodes in the gap function. Phys. Rev. Lett., 70:3999, 1993.

[19] C.C. Tsuei et. al. Pairing symmetry and flux quantization in a tricrystal supercon-
ducting ring of YBa2Cu3O7−δ. Phys. Rev. Lett., 73:593, 1994.

[20] C.C. Tsuei and J.R. Kirtley. Pairing symmetry in cuprate superconductors. Rev.
Mod. Phys., 72:969–1016, 2000.

[21] N. D. Mathur, F. M. Groshe, S. R. Julian, I. R. Walker, D. M. Freye, R. K. W.
Haselwimmer, and G. G. Lonzarich. Magnetically mediated superconductivity in
heavy fermion compounds. Nature, 394:39–43, 1998.

[22] A. G. Loeser, Z-X Shen, M. C. Schabel, C. Kim, M. Zhang, A. Kapitulnik, and
P. Fournier. Temperature and doping dependence of the Bi-Sr-Ca-Cu-O electronic
structure and fluctuation effects. Phys. Rev. B, 56:14185, 1996.

[23] C. Renner, B. Revaz, J-Y Genoud, K. Kadowaki, and O. Fisher. Pseudogap precur-
sor of the superconducting gap in under- and overdoped Bi2Sr2CaCu2O8+δ. Phys.
Rev. Lett., 80:149, 1998.

[24] Y. DeWilde, N. Miyakawa, P. Guptasarma, M. Iavarone, L. Ozyuzer, J. F. Za-
sadzinski, P. Romano, D. G. Hinks, C. Kendziora, G. W. Crabtree, and K. E.
Gray. Unusual strong-coupling effects in the tunneling spectroscopy of optimally
doped and overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev. Lett., 80:153, 1998.



Bibliography 172

[25] Y. J. Uemura, G. M. Luke, B. J. Sternlieb, J. H. Brewer, J. F. Carolan, W. N.
Hardy, R. Kadono, J. R. Kempton, R. F. Kiefl, S. R. Kreitzman, P. Mulhern,
T. M. Riseman, D. Ll. Williams, B. X. Yang, S. Uchida, H. Takagi, J. Gopalakrish-
nan, A. W. Sleight, M. A. Subramanian, C. L. Chien, M. Z. Cieplak, Gang Xiao,
V. Y. Lee, B. W. Statt, C. E. Stronach, W. J. Kossler, and X. H. Yu9. Universal
correlations between Tc and ns/m∗ (carrier density over effective mass) in high-tc
cuprate superconductors. Phys. Rev. Lett., 62:2317, 1989.

[26] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoemis-
sion studies of the cuprate superconductors. Rev. Mod. Phys., 75:473, 2003.

[27] D.S. Marshall, D. S. Dessau, A. G. Loeser, C.-H. Park, A. Y. Matsuura, J. N.
Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z.-X. Shen. Un-
conventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ:
Angle-resolved photoemission results. Phys. Rev. Lett., 76:4841, 1996.

[28] M. R. Norman, H. Ding, M. Randeria, J.C. Campuzano, T. Yokoya, T. Takeuchi,
T. Takahashi, T. Mochiku, K. Kodwaki, P. Guptasarma, and D.G. Hinks. Destruc-
tion of the Fermi surface in underdoped high-Tc superconductors. Nature, 392:157,
1998.

[29] X.J. Zhou, T. Yoshida, A. Lanzara, P.V. Bogdanov, S.A. Kellar, K.M. Shen, W.L.
Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida,
C.T. Lin, F. Zhou, J.W. Xiong, W.X. Ti, Z.X. Zhao, A. Fujimori, Z. Hussain, and
Z.-X. Shen. Universal nodal Fermi velocity in high-temperature superconductors.
Nature, 423:398, 2003.

[30] Z.-X. Shen and J. R. Schrieffer. Momentum, temperature, and doping dependence
of photoemission lineshape and implications for the nature of the pairing potential
in high-Tc superconducting materials. Phys. Rev. Lett., 78:1771, 1997.

[31] W. W. Warren Jr, R. E. Walstedt, G. F. Brennert, R. J. Cava, R. Tycko, R. F.
Bell, and G. Dabbagh. Cu spin dynamics and superconducting precursor effects in
planes above Tc in YBa2Cu3O6.7. Phys. Rev. Lett., 62:1193, 1989.

[32] Tom Timusk and Bryan Statt. The pseudogap in high-temperature superconduc-
tors: an experimental survey. Rep. Prog. Phys., 62:61, 1999.

[33] P. J. White, Z-X Shen, C. Kim, J. M. Harris, A. G. Loeser, P. Fournier, and
A. Kapitulnik. Rapid suppression of the superconducting gap in overdoped
Bi2Sr2CaCu2O8+δ. Phys. Rev. B, 54:R15669, 1996.

[34] A. V. Puchkov, D. N. Basov, and T. Timusk. The pseudogap state in high-Tc

superconductors: An infrared study. J. Phys. Condens. Matter, 8:10049, 1996.

[35] R. Hackl, G. Krug, R. Nemetschcek, M. Opel, and B. Stadlober. Spectroscopic
studies of superconductors (proc. SPIE 2696) vol v. page 194, 1996.



Bibliography 173

[36] J.M. Harris, P. J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki, S. Uchida,
W. D. Si, J. W. Xiong, Z.-X. Zhao, and D. S. Dessau. Measurement of an anisotropic
energy gap in single plane Bi2Sr2−xLaxCuO6+δ. Phys. Rev. Lett., 79:143, 1997.

[37] V.J. Emery and S.A. Kivelson. Importance of phase fluctuations in superconductors
with small superfluid density. Nature, 374:434, 1995.

[38] V.J. Emery and S.A. Kivelson. Superconductivity in bad metals. Phys. Rev. Lett.,
74:3253–3256, 1995.

[39] M. Franz and Z. Tesanovic. Algebraic fermi liquid from phase fluctuations: topo-
logical fermions, vortex berryons, and QED3 theory of cuprate superconductors.
Phys. Rev. Lett., 87:257003, 2001.

[40] E.W. Carson, S.A. Kivelson, V.J. Emery, and E. Manousakis. Classical phase
fluctuations in high temperature supersonductors. Phs. Rev. Lett., 83:612, 1999.

[41] Jelena Stajic, Andrew Iyengar, K. Levin, B. R. Boyce, and T. R. Lemberger. Com-
peting order parameters or precursor superconductivity. Phys. Rev. B, 68:024520,
2003.

[42] Yayu Wang, Z. A. Xu, T. Kakeshita, S. Uchida, S. Ono, Yoichi Ando, and
N. P. Ong. Onset of the vortexlike nernst signal above Tc in La2−xSrxCuO4 and
Bi2Sr2−yLayCuO6. Phys. Rev. B, 64:224519, 2001.

[43] Z. A. Xu, N. P. Ong, Y. Wang, T. Kageshita, and S. Uchida. Vortex-like excitations
and the onset of superconducting phase fluctuation in underdoped La2−xSrxCuO4.
Nature, 406:486, 2000.

[44] Yayu Wang, N. P. Ong, Z. A. Xu, T. Kakeshita, S. Uchida, D. A. Bonn, R. Liang,
and W. N. Hardy. High field phase diagram of cuprates derived from the Nernst
effect. Phys. Rev. Lett., 88:257003, 2002.

[45] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak. Hidden order in the
cuprates. Phys. Rev. B, 63:094503, 2001.

[46] C.M. Varma. Pseudogap phase and the quantum-critical point in copper-oxide
metals. Phys. Rev. Lett., 83:3528, 1999.

[47] Xiao-Gang Wen and Patrick A. Lee. Theory of underdoped cuprates. Phys. Rev.
Lett., 76:503, 1996.

[48] S. A. Kivelson, E. Fradkin, V. Oganesyan, I. P. Bindloss, J. M. Tranquada, A. Ka-
pitulnik, and C. Howald. How to detect fluctuating order in the high-temperature
superconductors. Rev. Mod. Phys., 75:1201, 2003.

[49] K. Yamada, C. H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S. Ueki, H. Kimura,
Y. Endoh, S. Hosoya, G. Shirane, R. J. Birgeneau, M. Greven, M. A. Kastner, and



Bibliography 174

Y. J. Kim. Doping dependence of the spatially modulated dynamical spin corre-
lations and the superconducting-transition temperature in La2−xSrxCuO4. Phys.
Rev. B., 57:6165, 1998.

[50] J. Tranquada, B. Sternlieb, J. Axe, Y. Nakamura, and S. Uchida. Evidence for
stripe correlations of spins and holes in copper oxide superconductors. Nature,
375:561, 1995.

[51] J. M. Tranquada, J. D. Axe, N. Ichikawa, A. R. Moodenbaugh, Y. Nakamura,
and S. Uchida. Coexistence of, and competition between, superconductivity and
charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 78:338, 1997.

[52] J. Tranquada. Modulated spin and charge densities in cuprate superconductors.
Physica B, 241:745, 1997.

[53] C. Stock, W. J. L. Buyers, Z. Tun, R. Liang, D. Peets, D. Bonn, W. N. Hardy,
and L. Taillefer. Neutron scattering search for static magnetism in oxygen-ordered
YBa2Cu3O6.5. Phys. Rev. B., 66:024505, 2002.

[54] C. Stock, W. J. L. Buyers, Z. Tun, R. Liang, D. Peets, D. Bonn, W. N. Hardy, and
L. Taillefer. Dynamic stripes and resonance in the superconducting and normal
phases of YBa2Cu3O6.5 ortho-II superconductor. Phys. Rev. B., 69:024505, 2004.

[55] B. Lake, H. M. Rønnow, N. B. Christensen, G. Aeppli, K. Lefmann, D. F. Mc-
Morrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, M. Nohara,
H. Takagi, and T. E. Mason. Antiferromagnetic order induced by an applied mag-
netic field in a high-temperature superconductor. Nature, 415:299, 2002.

[56] S. Nakamae, K. Behnia, N. Mangkorntong, M. Nohara, H. Takagi, S. J. C. Yates,
and N. E. Hussey. Electronic ground state of heavily overdoped nonsuperconducting
La2−xSrxCuO4. Phys. Rev. B., 68:100502, 2003.

[57] J.L. Tallon and J.W. Loram. The doping dependence of T ∗ - what is the real high
Tc phase diagram? Physica C, 349:53–68, 2001.

[58] C. Proust, E. Boaknin, R. W. Hill, L. Taillefer, and A. P. Mackenzie. Heat transport
in a strongly overdoped cuprate: Fermi liquid and a pure d-wave BCS supercon-
ductor. Phys. Rev. Lett., 89:147003, 2002.

[59] A. C. Durst and P. A. Lee. Impurity-induced quasiparticle transport and universal-
limit Wiedemann-Franz violation in d-wave superconductors. Phys. Rev. B,
62:1270, 2000.

[60] L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin. Universal heat
conduction in YBa2Cu3O6.9. Phys. Rev. Lett., 79:483, 1997.

[61] M. Chiao, R.W. Hill, C. Lupien, B. Popic, R. Gagnon, and L. Taillefer. Quasi-
particle transport in the vortex state of YBa2Cu3O6.9. Phys. Rev. Lett., 82:2943,
1999.



Bibliography 175

[62] D.G. Hawthorn. Thermal conduction in the high temperature superconductors
LSCO and Tl2201: A field and doping dependent study. PhD thesis, University
of Toronto, 2004.

[63] Neil W. Ashcroft and N. David Mermin. Solid State Physics. W. B. Saunders
Company, 1976.

[64] J.M. Ziman, editor. Electrons and Phonons. Clarendon Press, Oxford, UK, 1st
edition, 1960.

[65] A. Matthiessen. Rep. Brit. Ass., 32:144, 1862.

[66] G. Wiedemann and R. Franz. Ueber die wärme leitungsfähigkeit der metalle. Ann.
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Lindgärd, J. Madsen, T. Niemöller, H. F. Poulsen, O. Schmidt, J.R. Scheider,
Th. Wolf, P. Dosanjh, R. Liang, and W.N. Hardy. Superstructure formation and
the structural phase diagram of YBa2Cu3O6+x. Physica C, 317-318:259, 1999.

[128] P. Monca, S. Sanna, G. Calestani, A. Migliori, S. Lapinskas, and E.E. Tornau.
Orthorhombic low-temperature superstructures in YBa2Cu3O6+x. Phys. Rev. B,
63:134512, 2001.

[129] Masaya Watahiki, Wen-Jye Jang, Setuko Tajima, and Masato Murakami. Magnetic
properties of YBa2Cu3Oy crystals with various oxygen annealing conditions. J.
Appl. Phys., 83:377–381, 1998.
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